Солнце как источник бесплатной энергии: делаем солнечную батарею своими руками. Инструкция по самостоятельной сборке солнечной батареи из недорогих китайских панелей Воздушно солнечные батареи своими руками

Углеводороды были и остаются основным источником энергии, однако все чаще человечество обращается к восполнимым и экологически безопасным ресурсам. Это стало причиной повышенного интереса к солнечным батареям и генераторам.

Однако многие не решаются на установку гелиосистемы из-за дороговизны обустройства комплекса. Удешевить продукцию можно, если взяться за ее создание самостоятельно. Сомневаетесь в собственных силах?

Мы расскажем вам, как сделать солнечную батарею своими руками, используя доступные комплектующие. В статье вы найдете всю необходимую информацию для того, чтобы выполнить расчет гелиосистемы, подобрать составляющие комплекса, осуществить сборку и установку фотопанели.

По статистике, взрослый человек ежедневно использует около десятка различных приборов, работающих от сети. Хотя электричество считается относительно экологичным источником энергии, это иллюзия, ведь при его получении используются ресурсы, загрязняющие окружающую среду.

Какие комплектующие нужны и где их купить

Основная деталь – солнечная фотопанель. Обычно кремниевые пластины покупают через интернет с доставкой из Китая или США. Это связано с высокой ценой на комплектующие отечественного производства.

Себестоимость отечественных пластин получается настолько высокой, что выгоднее заказать на Еbay. Что касается брака, то на 100 пластин лишь 2-4 непригодны к использованию. Если заказывать китайские пластины, то риски выше, т.к. качество оставляет желать лучшего. Преимущество – только в цене.

Готовая панель гораздо удобнее в использовании, но и втрое дороже, поэтому лучше все-таки озадачиться поиском комплектующих и собрать устройство своими руками

Остальные комплектующие можно купить в любом магазине электротоваров. Также потребуются оловянный припой, рама, стекло, пленка, лента и карандаш для разметки.

Галерея изображений

В последнее время все популярнее становится солнечная энергетика.
Мы решили попробовать сделать солнечную батарею своими руками.

Информации в интернете не так много. Чаще всего один и тот же текст перепечатан с одного сайта на другой.
Цель сборки солнечного коллектора своими руками - оценить возможность такой сборки и экономический смысл.
Итак, в Китае заказан комплект поликристаллических солнечных элементов размером 6*6 дюймов для солнечного коллектора. Комплект включал в себя 40 солнечных элементов, карандаш для пайки, а так же соединительная лента для спайки элементов. Для удешевления куплены солнечные элементы класса В, т. е. с дефектами. Дефектные пластины не могут идти на промышленное производство солнечных панелей, но вполне работоспособны. Наша цель уменьшить бюджет.
Заявленные продавцом параметры: мощность одного элемента размером 6*6 дюймов 4Вт, напряжение 0,5В.
Для того, чтобы была возможность заряжать аккумулятор 12В, необходимо собрать панель с напряжением 18В, т. е. понадобится 36 элементов. 4 элемента запасные.
После получения комплекта из 40 солнечных элементов они были изучены. Качество элементов оставляет желать лучшего. Практически все они имеют достаточно серьезные дефекты. Ну ладно, наша цель оценить возможность сборки солнечной панели своими руками.
Купленные элементы не имеют припаянных проводников, поэтому паять их придется самостоятельно.
Как оказалось, это совсем не сложно. После пайки нескольких элементов выработалась определенная технология. Используя паяльник мощностью 25Вт, карандаш для подготовки поверхности пайки и имеющееся олово. Главное не наносить на место пайки много олова, тогда паять легко и делается это достаточно быстро. Проверка соединения повлекла за собой расколовшийся солнечный элемент, т. е. пайка получается достаточно надежной.
После обработки мест пайки карандашом наносим на эти места олово.
После пайки получается достаточно культурное изделие.
Так паяем все 40 элементов.
Паяльником работаем аккуратно. Для работы необходимо выбрать ровную поверхность. Удобнее всего паять на стеклянной поверхности.
Первый припаянный элемент был проверен на улице. Без нагрузки выдает 0.55В. Это дает надежду о реальности получить 18В с 36 элементов, спаянных последовательно.
Нашей целью не являлось конечное изделие, поэтому мы решили не делать корпус для солнечной панели, а ограничиться ровной поверхностью для набора солнечных элементов. Начинаем пайку элементов между собой.
Паять, как уже говорилось, не сложно. Но элементы настолько хрупкие, что требуют очень бережного к ним обращения. После соединения между собой последовательно 12 элементов несколько штук раскололись. Неравномерный цвет солнечных элементов - это качество исходных элементов.

Они, конечно, остались работоспособны, но ожидать от них заявленной мощности уже не придется.
Измеряем ток без нагрузки прямо в помещении. Конечно, эти цифры ничего не скажут, но нам стало интересно.
12 солнечных элементов выдали около 4В.
Несем нашу солнечную панель на улицу. На улице ясное небо и активное солнце.
Панель выдает напряжение без нагрузки около 7В. Т. е. мы получили ожидаемое напряжение.
Некоторые итоги.
Несколько советов по подобной работе. Проводник для соединения солнечных элементов необходимо делать строго в размер, учитывая полную длину одного солнечного элемента, расстояние между элементами и длину проводника на внутренней части солнечного элемента. Дело в том, что на обратной части солнечного элемента необходимо использовать проводник короче, чем сам элемент. Точная подгонка проводника позволит быстро и аккуратно паять элементы. Подрезание уже припаянного проводника грозит сломанным элементом.
Не наносите много олова на место пайки. Оно плохо разогревается, что приводит к более сильному нажатию паяльником. Существует риск расколоть солнечный элемент.
Для сборки солнечной батареи своими руками для начала необходимо подготовить корпус для будущей солнечной батареи. Затем в него уже вставлять и крепить солнечные элементы с припаянными проводниками, а уже затем паять солнечные элементы между собой. Это позволит избежать повреждений при переносе спаянных элементов.
Теперь несколько слов о экономике. Купленный на Ebay комплект обошелся около 3000 руб. Солнечные элементы класса А, т. е. без дефектов, стоят дороже. При условии, что нам бы хватило 40 полученных солнечных элементов на солнечную батарею из 36 этих солнечных элементов, а их мощность соответствовала бы заявленной в 4Вт, то мы бы получили панель с напряжением 18В мощностью 144Вт. Дополнительно придется изготовить своими руками корпус солнечной батареи, затратив какие либо средства.
Заглядываем в интернет и легко находим солнечные батареи заводского производства с подобными характеристиками за 6000 руб.

Нужно ли делать солнечную батарею своими руками? На наш взгляд нет. Солнечная панель заводского производства выиграет по всем параметрам: надежности, долговечности, техническим параметрам и цене.

Содержание:

Обеспечение комфортных условий проживания в современных квартирах и частных домах не может обойтись без электрической энергии, потребность в которой постоянно увеличивается. Однако с достаточной регулярностью увеличиваются и цены на этот энергоноситель. Соответственно возрастают и общие затраты на содержание жилья. Поэтому все более актуальной становится солнечная батарея своими руками для частного дома, наряду с другими альтернативными источниками электроэнергии. Данный способ дает возможность сделать объект энергонезависимым в условиях постоянного роста цен и отключений электричества.

Эффективность солнечных батарей

Проблема автономного электроснабжения приборов и оборудования в частных домах рассматривается уже в течение длительного времени. Одним из вариантов альтернативного питания стала солнечная энергия, которая в современных условиях нашла широкое применение на практике. Единственным фактором, вызывающим сомнения и споры, является эффективность солнечных батарей, которая не всегда оправдывает возлагаемые надежды.

Работа солнечных батарей напрямую зависит от количества солнечной энергии. Таким образом, батареи будут наиболее эффективны в регионах, где преобладают солнечные дни. Даже в самом идеальном варианте эффективность батарей составляет всего 40%, а в реальных условиях этот показатель гораздо ниже. Другое условие нормального функционирования заключается в наличии значительных площадей для монтажа автономных солнечных систем. Если для загородного дома это не является серьезной проблемой, то владельцам квартир приходится решать множество дополнительных технических задач.

Устройство и принцип работы

В основе работы солнечных батарей лежит способность фотоэлементов выполнять преобразование солнечной энергии в электрическую. Все вместе они собираются в виде многоячеистого поля, объединенного в общую систему. Действие солнечной энергии превращает каждую ячейку в источник электрического тока, собирающегося и накапливающегося в аккумуляторных батареях. Размеры общей площади такого поля напрямую влияют на мощность всего устройства. То есть с возрастанием числа фотоэлементов, соответственно увеличивается и количество вырабатываемой электроэнергии.

Это вовсе не означает, что необходимое количество электричества может вырабатываться только на очень больших площадях. Существует множество мелких бытовых приборов, использующих солнечную энергию - калькуляторы, фонарики и другие устройства.

В современных загородных домах все более популярными становятся приборы освещения на солнечных батареях. С помощью этих простых и экономичных устройств освещаются садовые дорожки, террасы и другие необходимые места. В темное время суток используется электроэнергия, накопленная днем, когда светит солнце. Использование экономных ламп позволяет расходовать накопленную электроэнергию в течение длительного времени. Решение основных задач энергоснабжения осуществляется с помощью других, более мощных систем, позволяющих вырабатывать достаточное количество электричества.

Основные виды солнечных батарей

Перед тем как приступать к собственноручному изготовлению солнечных батарей, рекомендуется ознакомиться с их основными видами, чтобы выбрать для себя наиболее подходящий вариант.

Все преобразователи солнечной энергии разделяются на пленочные и кремневые, в соответствии с их устройством и конструктивными особенностями. Первый вариант представлен тонкопленочными батареями, где преобразователи выполнены в виде пленки, изготовленной по специальной технологии. Эти конструкции также известны как полимерные. Их можно устанавливать в любые доступные места, однако, они требуют много места и обладают низким коэффициентом полезного действия. Даже средняя облачность способна снизить эффективность пленочных устройств сразу на 20%.

Кремниевые батареи представлены тремя типами:

  • . Конструкция состоит из многочисленных ячеек с встроенными кремневыми преобразователями. Они соединяются в одно целое и заполняются силиконом. Отличаются простотой эксплуатации, легкостью, гибкостью, водонепроницаемостью. Но, чтобы обеспечить эффективную работу таких батарей, требуется действие прямых солнечных лучей. Несмотря на сравнительно высокий КПД - до 22%, при наступлении облачности выработка электроэнергии может значительно снизиться или прекратиться полностью.
  • . По сравнению с монокристаллическими, у них больше преобразователей, размещаемых в ячейках. Их установка выполнена в разных направлениях, что существенно повышает эффективность работы даже при слабом свете. Эти батареи получили наибольшее распространение, особенно в городских условиях.
  • Аморфные. Обладают низкой эффективностью - всего 6%. Однако, они считаются очень перспективными, благодаря способности к поглощению светового потока во много раз больше, чем у первых двух типов.

Все рассмотренные виды солнечных батарей изготавливаются в заводских условиях, поэтому их цена остается пока еще очень высокой. В связи с этим можно попытаться изготовить солнечную батарею самостоятельно, с использованием недорогих материалов.

Выбор материалов и деталей для изготовления солнечной батареи

Поскольку высокая стоимость автономных источников солнечной энергии делает их недоступными для широкого использования, домашние мастера могут попробовать организовать изготовление солнечных батарей своими руками из подручных материалов. Следует помнить, что при изготовлении батареи невозможно обойтись лишь подручными материалами. Обязательно придется покупать заводские детали, пусть даже и не новые.

В состав преобразователя солнечной энергии входит несколько основных элементов. В первую очередь, это сама батарея определенного типа, которая уже была рассмотрена выше. Далее идет контроллер батареи, контролирующий уровень заряда аккумуляторов полученным электрическим током. Следующим элементом являются аккумуляторы, накапливающие электричество. В обязательном порядке потребуется , преобразующий постоянный ток в переменный. Таким образом, все домашние бытовые приборы, рассчитанные на 220 вольт, смогут нормально работать.

Каждый из этих элементов можно свободно приобрести на рынке электроники. Если же имеются определенные теоретические знания и практические навыки, то большую часть из них можно собрать самостоятельно по типовым схемам, в том числе и контроллер солнечной батареи. Для того чтобы рассчитать мощность преобразователя, необходимо знать, с какой целью он будет использоваться. Это может быть только освещение или отопление, а также полное обеспечение потребностей объекта. В связи с этим будут выбираться материалы и комплектующие детали.

При изготовлении солнечной батареи своими руками, нужно определиться не только с мощностью, но и с рабочим напряжением сети. Дело в том, что сети на солнечной энергии могут работать на постоянном или переменном токе. Последний вариант считается более предпочтительным, так как позволяет разносить электроэнергию потребителям на расстояние свыше 15 метров. При использовании поликристаллических батарей, с одного квадратного метра можно получить, в среднем, за один час примерно 120 Вт. То есть, для получения 300 кВт в месяц потребуются солнечные панели общей площадью 20 м2. Именно столько расходует обычная семья в составе 3-4 человек.

В частных домах и на дачах применяются солнечные панели, каждая из которых включает 36 элементов. Мощность одной панели составляет около 65 Вт. В небольшом частном доме или на даче вполне достаточно 15 панелей, способных вырабатывать электрическую мощность до 5 кВт в час. После выполнения предварительных расчетов можно приобретать преобразующие пластины. Допускается приобретение поврежденных элементов с небольшими дефектами, влияющими только на внешний вид батареи. В рабочем состоянии каждый элемент способен выдавать около 19 В.

Изготовление солнечных батарей

После того как все материалы и детали подготовлены, можно начинать сборку преобразователей. При спаивании элементов нужно предусмотреть зазор на расширение между ними в пределах 5 мм. Паять следует очень внимательно и осторожно. Например, при отсутствии проводков у пластинок, их нужно будет напаять вручную. Для работы понадобится паяльник на 60 ватт, к которому последовательно подключена обычная лампа накаливания на 100 Вт.

Все пластины спаиваются последовательно между собой. Пластины отличаются повышенной хрупкостью, поэтому их спаивание рекомендуется производить с использованием каркаса. Во время распайки в схему совместно с фотопластинками вставляются диоды, предохраняющие фотоэлементы от разряда при снижении уровня освещенности или наступлении полной темноты. С этой целью половинки панели объединяются в общей шине, которая в свою очередь выводится на клеммник, за счет чего и происходит создание средней точки. Те же самые диоды предохраняют аккумуляторные батареи от разряда в ночное время.

Одним из основных условий эффективной работы батарей является качественная пайка всех точек и узлов. Перед тем как устанавливать подложку, эти места обязательно тестируются. Для вывода тока рекомендуется использовать проводники с малым сечением, например, акустический кабель в силиконовой изоляции. Все провода закрепляются с помощью герметика. После этого выбирается материал для поверхности, к которой будут прикрепляться пластины. Наиболее подходящими характеристиками обладает стекло, гораздо лучше пропускающее световой поток, чем карбонат или оргстекло.

При изготовление солнечной батареи из подручных средств, необходимо позаботиться и о коробе. Обычно короб изготавливается из деревянного бруса или алюминиевого уголка, после чего в него на герметик укладывается стекло. Герметик должен заполнить все неровности, а затем полностью высохнуть. За счет этого пыль не попадет внутрь, и фотопластинки в процессе эксплуатации не будут загрязняться.

Далее на стекло устанавливается лист с припаянными фотоэлементами. Он может закрепляться разными способами, однако, наиболее оптимальными вариантами считаются прозрачная эпоксидная смола или герметик. Эпоксидной смолой равномерно покрывается вся поверхность стекла, затем на нее устанавливаются преобразователи. При использовании герметика крепление осуществляется точками в центре каждого элемента. По концу сборки должен получиться герметичный корпус, внутри которого размещается солнечная батарея. Готовое устройство будет выдавать примерно 18-19 вольт, что вполне достаточно для зарядки аккумуляторной батареи на 12 вольт.

Возможность домашнего отопления

После того как самодельная солнечная батарея собрана, каждый хозяин наверняка захочет проверить ее в действии. Наиболее важной проблемой считается отопление дома, поэтому в первую очередь проверяются возможности обогрева за счет солнечной энергии.

Для отопления используется гелиоколлекторы. С помощью вакуумного коллектора солнечный свет превращается в тепло. Тонкие стеклянные трубки заполняются жидкостью, которая нагревается от солнца и передает тепло воде, помещенной в бак-накопитель. В нашем случае этот способ не подходит, поскольку речь идет исключительно о преобразовании солнечной энергии в электрическую.

Все зависит от мощности используемого устройства. В любом случае на нагрев воды в бойлере будет уходить большая часть получаемой энергии. Если 100 литров воды нагреть до 70-80 градусов, понадобится примерно 4 часа времени. Потребление электроэнергии водяным котлом с ТЭНами на 2 кВт составит 8 кВт. При вырабатывании электроэнергии 5 кВт в час, никаких проблем не будет. Однако при площади батарей менее 10 м2 отопление частного дома с их помощью становится невозможным.

Все больше людей стремится к приобретению домов, находящихся в отдалении от очагов цивилизации. Причин этому существует множество, главная из которых, наверное, экологическая. Ни для кого не секрет, что интенсивное развитие промышленности пагубно сказывается на состоянии окружающей среды. Но при покупке такого дома можно столкнуться с отсутствием электроснабжения, без которого жизнь в двадцать первом веке едва ли можно себе представить.

Проблему обеспечения энергией здания, находящегося далеко от очагов цивилизации можно попробовать решить установкой ветрогенератора. Однако этот способ далеко не идеален. Для того, чтобы электроэнергии хватило на весь дом потребуется установка большого ветряка или нескольких, но и в этом случае энергообеспечение будет носить эпизодический характер, отсутствуя в безветренную погоду.

Для обеспечения стабильности энергообеспечения дома, эффективным решением является совместное использование ветрогенератора и солнечной батареи, но, к сожалению, батареи далеко не дешевы. Решением этих сложностей было бы производство солнечной батареи своими руками, способной на равных конкурировать с заводскими по мощности, но в то же время приятно отличаться от них ценой. И такое решение есть!

Для начала, необходимо определиться, что же представляет собой солнечная батарея . По своей сути, это контейнер, содержащий в себе массив, преобразующих солнечную энергию в электрическую, элементов. Слово «массив» применимо в данном случае, потому что для генерации достаточных объемов энергии, необходимых в условиях энергообеспечения жилого дома, солнечных элементов потребуется довольно внушительное количество. В виду высокой хрупкости элементов, их в обязательном порядке объединяют в батарею, которая обеспечивает им защиту от механических повреждений и объединяет вырабатываемую энергию. Как видно, в принципиальном устройстве солнечной батареи нет ничего по-настоящему сложного, поэтому ее вполне можно сделать своими руками.

Перед тем, как приступать непосредственно к действиям, принято проводить глубокую теоретическую подготовку, чтобы избежать лишних трудностей и издержек в процессе. Именно на этом этапе многие энтузиасты сталкиваются с первым препятствием – практически полным отсутствием полезной с практической точки зрения информации. Именно это явление создает надуманную видимость сложности солнечных батарей: раз их никто не делает сам, значит это сложно. Однако, задействовав логическое мышление можно придти к следующим выводам:

  • основа целесообразности всего процесса заключается в приобретении солнечных элементов по доступной цене
  • покупка новых элементов исключена, ввиду их высокой стоимости и сложности покупки в необходимом количестве.
  • солнечные элементы, обладающие дефектами и повреждениями, могут быть приобретены на аукционе eBay и в других источниках, по значительно более низким ценам, чем новые.
  • дефектные элементы вполне могут быть использованы в заданных условиях.

На основе сделанных выводов, становится ясно, что следующим шагом в изготовлении солнечной батареи будет покупка дефектных солнечных элементов. В нашем случае элементы были куплены на eBay.

Приобретенные монокристаллические солнечные элементы имели размер 3х6 дюйма, и каждый их них выдавал порядка 0.5В энергии. Таким образом, соединенные последовательно 36 таких элементов, в общей сложности выдают около 18В, которых достаточно для эффективной подзарядки 12В аккумулятора. Следует помнить, что такие солнечные элементы хрупкие и ломкие, поэтому вероятность их повреждения при неосторожном обращении крайне высока.

Для обеспечения защиты от механических повреждений продавец покрыл воском наборы из восемнадцати штук. С одной стороны это эффективная мера, позволяющая избежать повреждений во время транспортировки, с другой стороны – лишние проблемы, так как удаление воска вряд ли кому-то покажется приятной и легкой задачей. Поэтому, если есть такая возможность, приобретение элементов, не покрытых воском, является лучшим решением. Если обратить внимание на изображенные световые элементы, можно заметить, что они имеют припаянные проводники. Даже в этом случае придется поработать паяльником, а если же приобрести элементы без проводников – работы будет в разы больше.

Вместе с тем были приобретены пара наборов элементов, которые не были залиты воском, у другого продавца. Они пришли упакованными в коробку из пластика с незначительными сколами по бокам. В нашем случае сколы не являлись предметом для беспокойства, потому как не были способны ощутимо снизить эффективность всего элемента. Однако, возможно, кто-то сталкивался с более плачевными результатами повреждений при транспортировке, что необходимо иметь в виду. Приобретенных элементов было достаточно для изготовления двух солнечных батарей, даже с излишком, на случай непредвиденных повреждений или отказов.

Конечно, при изготовлении солнечной батареи можно использовать и другие световые элементы, в широком спектре размеров и форм присутствующих у продавцов. В этом случае необходимо помнить три вещи:

  1. Световые элементы одного типа генерируют идентичное напряжения, вне зависимости от размера и формы, поэтому их требуемое количество останется неизменным
  2. Генерация тока имеет прямую зависимость от размера элемента: большие генерируют больший ток, маленькие – меньший.
  3. Суммарная мощность солнечной батареи определяется ее напряжением, умноженным на ток.

Как видно, использование элементов большого размера при изготовлении солнечной батареи способно обеспечить более высокий показатель мощности, но вместе с тем и сделает саму батарею более громоздкой и тяжелой. В случае использования элементов меньшего размера, размер и вес готовой батареи уменьшится, однако вместе с тем уменьшится и выдаваемая мощность. Крайне не рекомендуется использование в одной батарее солнечных элементов разного размера, так как генерируемый батареей ток будет эквивалентен току самого маленького из используемых элементов.

Приобретенные в нашем случае солнечные элементы при размере 3х6 дюйма генерировали ток примерно в 3 ампера. При солнечной погоде, тридцать шесть, соединенных последовательно, элемента, способны выдавать порядка 60 Вт мощности. Цифра не особенно впечатляет, тем не менее, это лучше, чем ничего. Следует учитывать, что указанная мощность будет генерироваться каждый солнечный день, заряжая аккумулятор. В случае использования электроэнергии для осуществления питания светильников и аппаратуры с небольшим потреблением тока, такая мощность является вполне достаточной. Не нужно и забывать о ветрогенераторе, также производящем энергию.

После приобретения солнечных элементов далеко не лишним будет спрятать их от людских глаз в безопасное место, защищенное от детей и домашних животных, до того момента, когда возможно будет их непосредственная установка в солнечную батарею. Это жизненная необходимость, в виду крайне высокой хрупкости элементов и подверженности их механической деформации.

По сути корпус солнечной батареи, ни что иное, как простой неглубокий ящик. Ящик непременно необходимо изготовить неглубоким, для того чтобы его бортики не создавали тени, когда солнечный свет падает на батарею под большим углом. В качестве материала вполне подойдет фанера 3/8 дюйма и рейки для бортиков 3/4 дюйма толщиной. Для лучшей надежности крепление бортиков не лишним будет осуществить двумя способами – приклеиванием и привинчиванием. Для упрощения последующей пайки элементов, батарею лучше разделить на две части. Роль разделителя выполняет расположенная по центру ящика планка.

На этом небольшом наброске, можно увидеть размеры в дюймах(1 дюйм равен 2,54 см.), изготовленной в нашем случае солнечной батареи. Бортики расположены по всем краям и в середине батареи и имеют толщину 3/4 дюйма. Данный эскиз ни в коем случае не претендует на роль эталона при изготовлении батареи, он был сформирован скорее из личных предпочтений. Размеры приведены для наглядности, но в принципе они, как и дизайн, могут быть различны. Не бойтесь экспериментировать и вполне вероятно, батарея может получиться лучше, чем в нашем случае.

Вид на половину корпуса батареи, в которой будет производится размещение первой группы солнечных элементов. Небольшие отверстия, которые вы видите на бортиках, представляют собой не что иное, как вентиляционные отверстия. Они предназначены для удаления влаги и поддержания давления, эквивалентного атмосферному внутри батареи. Следует обратить особое внимание на расположении отверстий для вентиляции в нижней части корпуса батареи, потому как расположение их в верхней части приведет к попаданию излишней влаги извне. Также отверстия необходимо сделать и в планке, расположенной по центру.

Два вырезанных куска ДВП будут выполнять функцию подложек, т.е. на них будет производиться монтаж солнечных элементов. В качестве альтернативы ДВП подойдет любой тонкий материал, обладающий высокими показателями жесткости и не проводящий электрический ток.

Для защиты солнечной батареи от агрессивного воздействия климата и окружающей среды, используется оргстекло, которым необходимо закрывать лицевую сторону. В данном случае были вырезаны два куска, однако может использоваться и один большой. Использование обычного стекла не рекомендуется, по причине его повышенной хрупкости.

Вот незадача! Для обеспечения крепления на шурупы, было принято решение просверлить отверстия вокруг кромки. При сильном надавливании во время сверления, оргстекло может сломаться, что и произошло в нашем случае. Проблема была решена сверлением недалеко нового отверстия, а отколовшийся кусок просто приклеили.

После этого было произведено окрашивание всех деревянных частей солнечной батареи краской в несколько слоев, для повышения защиты конструкции от влаги и воздействия среды. Покраска осуществлялась как внутри, так и снаружи. Цвет краски, как и тип может варьироваться в широком диапазоне, в нашем случае была использована краска, имеющаяся в наличии в достаточном количестве.

Окраска подложек также была произведена с обеих сторон и в несколько слоев. Покраске подложки необходимо уделять особенное внимание, так при некачественной покраске, дерево может начать коробиться от воздействия влаги, что вероятно приведет к повреждению приклеенных к ней солнечных элементов.
Теперь, когда корпус солнечной батареи готов и просыхает самое время приступить к подготовке элементов.
Как уже упоминалось ранее, удаление воска с элементов – задача не из приятных. В ходе экспериментов, методом проб и ошибок, был найдет эффективный способ. Тем не менее, рекомендации по покупки не покрытых воском элементов, остались прежними.

Для растопки воска и отделения элементов друг от друга, необходимо отмочить солнечные элементы в горячей воде. При этом следует исключить возможность закипания воды, потому как бурное кипение может повредить элементы и нарушить их электрические контакты. Для исключения неравномерного нагрева, рекомендуется поместить элементы в холодную воду и плавно нагревать. Следует воздержать от вытягивания элементов из кастрюли за проводники, так как они могут оборваться.

На этом фото изображена окончательная версия аппарата для удаления воска. На заднем плане с правой стороны находится первая емкость, предназначенная для растапливания воска. Слева на переднем плане расположена емкость с горячей мыльной водой, а справа – чистая вода. Вода во всех емкостях довольно горячая, но ниже кипения воды. Нехитрый технологический процесс удаления воска заключается в следующем: в первой емкости необходимо растопить воск, затем элемент перенести в горячую мыльную воду для удаления остатков воска, в заключении промыть чистой водой. После очистки от воска, элементы необходимо просушить, для этого они были выложены на полотенце. Следует отметить что слив мыльной воды в канализацию недопустим, так как воск, остыв, затвердеет и засорит ее. Результатом процесса очистки является почти полное удаление воска с солнечных элементов. Оставшийся воск не способен помешать как пайке, так и работе элементов.

Солнечные элементы сушатся на полотенце после очистки. После удаления воска элементы стали значительно более хрупкими, что делает их более сложными в хранении и обращении. Рекомендуется не производить очистку до тех пор, пока не будет необходима их непосредственная установка в солнечную батарею.

Для упрощения процесса монтажа элементов, рекомендуется начать с отрисовки сетки на основе. После произведения отрисовки, элементы были выложены по сетке вверх обратной стороной, для того чтобы их спаять. Все восемнадцать элементов, расположенных в каждой половине были последовательно соединены, после чего были и соединены и половины, также последовательным способом, для получения необходимого напряжения

В начале спайка элементов между собой может показаться сложной, однако со временем она становится проще. Рекомендуется начать с двух элементов. Необходимо разместить проводники одного элемента таким образом, чтобы они пересекали точки пайки другого, также следует убедиться, что элементы установлены согласно разметке.
Для непосредственного осуществления пайки использовался паяльник малой мощности и прутковый припой с канифольной сердцевиной. Перед пайкой была произведена смазка точек пайки флюсом при помощи специального карандаша. Ни в коем случае не следует давить на паяльник. Элементы настолько хрупкие, что могут от небольшого давления придти в негодность.

Повторение пайки осуществлялась до образования цепочки, состоящей из шести элементов. Шины соединения от сломанных солнечных элементов, были припаяны к обратно стороне элемента цепочки, являющегося последним. Таких цепочек получилось три – итого 18 элементов первой половины батареи были благополучно объединены в сеть.
По причине того, что все три цепочки необходимо соединить последовательно, средняя цепочка была повернута на 180 градусов по отношению к другим. Общая ориентация цепочек в итоге получилось правильной. Следующим шагом является приклеивание элементов на место.

Для осуществления солнечных элементов может потребоваться некоторая сноровка. Необходимо нанести небольшую каплю герметика, изготовленного на основе силикона, в центре каждого элемента одной цепочки. После этого следует перевернуть цепочку лицевой стороной вверх и разместить солнечные элементы согласно нанесенной ранее разметке. Затем необходимо легонько прижать элементы, осторожно надавливая в центре, чтобы приклеить их. Значительные сложности могут возникнуть в основном при переворачивании гибкой цепочки, поэтому лишняя пара рук на это этапе не повредит.
Не рекомендуется наносить избыточное количество клея и приклеивать элементы по краям. Это обусловлено тем, что сами элементы и подложка, на которую они установлены, будут деформироваться при изменении условий влажности и температуры, что может привести к выходу элементов из строя.

Так выглядит собранная половина солнечной батареи. Для соединения первой и второй цепочек элементов была использована медная оплетка кабеля.

Для этих целей вполне подойдут специальные шины или даже медные провода. Аналогичное соединение необходимо произвести и с обратной стороны. Провод был прикреплен к основанию каплей герметика.

Тест первой изготовленной половины батареи на солнце. При слабой солнечной активности, изготовленная половина генерирует 9.31В. Довольно неплохо. Пора приступать к изготовлению второй половины батареи.

Каждая половина идеально помещается на свое место. Для крепления основы внутри батареи были использованы 4 шурупа небольшого размера.
Провод, предназначенный для соединения половин солнечной батареи, был пропущен через вентиляционное отверстие в центральном бортике и закреплен при помощи герметика.

Необходимо каждую солнечную панель в систему снабдить диодом блокирования, который должен быть соединен с батареей последовательно. Он предназначен для исключения разряда аккумулятора через батарею. Диод использовался Шоттки на 3.3А, обладающий значительно более низким падением напряжения, в сравнении с обычными диодами, что минимизирует потери мощности на диоде. Набор из двадцати пяти диодов марки 31DQ03 был приобретен всего за несколько долларов на eBay.
Исходя из технических характеристик диодов, наилучшим местом их размещения является внутренняя часть батареи. Связано это с зависимостью падения напряжения у диода от температуры. Так как температура внутри батареи будет выше окружающей, следовательно и эффективность диода повысится. Для закрепления диода был использован герметик.

Для того чтобы вывести наружу провода, было просверлено отверстие в днище солнечной батареи. Провода лучше завязать на узел и закрепить герметиком, для предотвращения их последующего вытягивания.
Крайне необходимо дать высохнуть герметику до установки защиты из оргстекла. Силиконовые испарения могут образовать пленку на внутренней поверхности оргстекла, если не дать силикону просохнуть на открытом воздухе.

На выходной провод солнечной батареи, был прикреплен двухконтактный разъем, розетка которого в будущем будет присоединена к контроллеру заряда аккумуляторных батарей, используемого для ветрогенератора. В итоге солнечная батарея и ветрогенератор смогут работать параллельно.

Вот так выглядит окончательная версия солнечной батареи с установленным экраном. Не стоит торопиться с герметизацией стыков оргстекла до произведения полного тестирования работоспособности батареи. Может случиться так, что на одном из элементов отошел контакт и потребуется доступ к внутренностям батареи для ликвидации проблемы.

Предварительные расчеты оправдались: законченная солнечная батарея на ярком осеннем солнце выдает 18.88В без нагрузки.

Этот тест был произведен при аналогичных условиях и показывает прекрасную работоспособность батареи – 3,05А.

Солнечная батарея в рабочих условиях. Для сохранения ориентации на солнце, батарея перемещается несколько раз в день, что само по себе не сложно. В перспективе возможна установка автоматического слежения за положением солнца на небосводе.
Итак, какова же конечная стоимость батареи, которую мы умудрились сделать своими руками? Учитывая то, что куски дерева, провода и прочие пригодившиеся в изготовлении батареи вещи были у нас в мастерской, наши с вами подсчеты могут немного отличаться. Конечная стоимость солнечной батареи составила 105 долларов с учетом 74 долларов, потраченных на приобретение самих элементов.
Согласитесь, не так уж и плохо! Это всего лишь малая часть стоимости заводской батареи эквивалентной мощности. И в этом нет ничего сложного! Для увеличения выходной мощности вполне можно соорудить несколько таких батарей.

являются фотоэлектрические преобразователи (солнечные модули), которые обращают энергию солнечного света в электричество. Для того, чтобы в доме пользоваться бытовыми приборами за счет солнечной батареи, таких модулей должно быть достаточно много.

Энергии, вырабатываемой одним модулем, недостаточно для удовлетворения энергетических потребностей. Между собой фотоэлектрические преобразователи связаны одной последовательной цепью.

Части, из которых состоит солнечная батарея:

  1. Солнечные модули ,объединенные в рамки.В одной рамке объединяются от единиц до нескольких десятков фотоэлектрических элементов. Для обеспечения электроэнергией целого дома понадобится несколько панелей с элементами.
  2. . Служит для накопления получаемой энергии, которую затем можно использовать в темное время суток.
  3. Контроллер . Он следит за разрядкой и зарядкой аккумулятора.
  4. . Преобразует постоянный ток, полученный от солнечных модулей в переменный.

Солнечный модуль (или фотоэлектрический элемент) основан на принципе p-n перехода, и по своему устройству очень напоминает транзистор. Если у транзистора спилить шляпку и на поверхность направить солнечные лучи, то подключенным к нему прибором можно определить мизерный электрический ток. Солнечный модуль работает по такому же принципу, только поверхность перехода у солнечного элемента значительно больше.

Как и многие типы транзисторов, солнечные элементы изготавливаются из кристаллического кремния.

По технологии изготовления и материалам различают три вида модулей:

  1. Монокристаллические . Изготовлены в виде цилиндрических кремниевых слитков. Преимущества элементов заключается в высокой производительности, компактности и в наибольшем сроке службы.
  2. Тонкопленочные . Делается напыление слоев фотоэлектрического преобразователя на тонкую подложку. КПД тонкопленочных модулей относительно невысок (7-13%).
  3. Поликристаллические . Расплавленный кремний заливается в квадратную форму, затем остуженный материал режется на квадратные пластинки. Внешне отличаются от монокристаллических модулей тем, что края углов у поликристаллических пластин не обрезаны.

Аккумулятор. В солнечных батареях наибольшее применение нашли свинцово-кислотные аккумуляторы. Стандартный аккумулятор имеет напряжение 12 вольт, для получения большего напряжения собирают аккумуляторные блоки. Так можно собрать блок напряжением 24 и 48 вольт.

Контроллер заряда солнечных батарей. Контроллер заряда действует по принципу регулятора напряжения в автомобиле. В основном на 12 вольт выдают напряжение от 15 до 20 вольт, и без контроллера могут быть повреждены перегрузкой. При 100% заряженном аккумуляторе контроллер отключает модули и предохраняет аккумулятор от закипания.

Инвертор. Солнечные модули вырабатывают постоянный ток, а для использования бытовых приборов и техники требуется переменный ток и напряжение 220 вольт. Инверторы предназначены для преобразования постоянного тока, делая его переменным.

Выбор комплектующих для изготовления

Чтобы снизить себестоимость солнечной станции, нужно попробовать собрать ее самостоятельно. Для этого потребуется закупить необходимые комплектующие, какие-то элементы можно изготовить самому.

Самостоятельно получится собрать:

  • рамки с фотоэлектрическими преобразователями;
  • контроллер зарядки;
  • инвертор напряжения;

Самые большие затраты будут связаны с приобретением самих солнечных элементов. Детали можно заказать из Китая или на eBay, такой вариант обойдется дешевле.

Благоразумно приобретать работоспособные преобразователи с повреждениями и дефектами – они просто забракованы производителем, но вполне исправны. Нельзя покупать элементы разных размеров и мощности – максимальный ток солнечной батареи будет ограничен током самого малого элемента.

Для изготовления рамки с солнечными элементами потребуется:

  • алюминиевый профиль;
  • солнечные элементы (обычно 36 штук для одной рамки);
  • припой и флюс;
  • дрель;
  • крепежные делали;
  • силиконовый герметик;
  • медная шина;
  • лист прозрачного материала (оргстекло, поликарбонат, плексиглас);
  • лист фанеры или текстолита(оргстекла);
  • диоды Шоттки;

Собирать инвертор самостоятельно имеет смысл только при небольшом энергопотреблении. Контроллер заряда в простом исполнении не так дорого стоит, поэтому нет особого смысла тратить время на изготовление прибора.

Технология изготовления своими руками

Для сборки солнечной батарей потребуется:

  1. Сконструировать рамку (корпус).
  2. Спаять все солнечные элементы в параллельную цепь.
  3. Закрепить солнечные элементы на рамке.
  4. Сделать корпус герметичным – прямое попадание атмосферных осадков на фотоэлектрические элементы недопустимо.
  5. Разместить батарею в районе наибольшей солнечной освещенности.

Для удовлетворения энергетических потребностей частного дома одной солнечной панели (рамки) будет недостаточно. Исходя из практики, с одного квадратного метра солнечной панели можно получить 120 Вт мощности. Для нормального энергообеспечения жилого дома потребуется где-то 20 кв. м. площади солнечных элементов.

Чаще всего батареи размещают на крыше дома с солнечной стороны.

Сборка корпуса


Корпус можно собирать из фанерного листа и реек, или из алюминиевых уголков и листа и оргстекла (текстолита). Необходимо определиться, сколько элементов будет размещаться в рамке. Следует учитывать, что между элементами необходим зазор в 3-5 мм, и размер рамки рассчитывается с учетом этих расстояний. Расстояние необходимо для того, чтобы при тепловом расширении пластины не прикасались друг с другом.

Сборка конструкции из алюминиевого профиля и оргстекла:

  • из алюминиевого уголка делается прямоугольный каркас;
  • По углам в алюминиевом корпусе сверлятся отверстия для крепежа;
  • на внутреннюю часть профиля корпуса наносится силиконовый герметик по всему периметру;
  • в раму устанавливается лист оргстекла (текстолита) и плотно прижимается к раме;
  • по углам корпуса с помощью шурупов ставятся крепежные уголки, которые надежно фиксируют лист прозрачного материала в корпусе;
  • герметику дают основательно высохнуть;

Все, корпус готов. Перед размещением солнечных элементов в корпусе необходимо тщательно протереть поверхность от грязи и пыли.

Соединение фотоэлементов


Обращаясь с фотоэлектронными элементами, следует помнить, что они очень хрупкие и требуют бережного отношения. Перед соединением пластин в последовательную цепочку их сначала тщательно, но аккуратно протирают– пластины должны быть идеально чистыми.

Если фотоэлементы были куплены уже с припаянными проводниками, это упрощает процесс соединения модулей. Но перед сборкой в этом случае необходимо проверить качество готовой пайки, и если есть неровности – устранить их.

На фотоэлектрических пластинах предусмотрены контакты по обеим сторонам – это контакты разной полярности. Если проводники(шины) еще не припаяны, необходимо сначала припаять их к контактам пластин, а затем уже соединить фотоэлектрические элементы между собой.

Чтобы припаять шины к фотоэлектрическим модулям, нужно:

  1. Отмерить нужную длину шины и нарезать на куски нужное количество полосок.
  2. Протереть контакты пластин спиртом.
  3. Тонким слоем нанести на контакт флюс по всей длине контакта с одной стороны.
  4. Приложить шину точно по длине контакта и разогретым паяльником медленно провести по всей поверхности пайки.
  5. Перевернуть пластину и повторить все операции пайки на другой стороне.

Нельзя сильно прижимать паяльник к пластине, элемент может лопнуть. Также необходимо проверить качество пайки – неровностей на лицевой стороне фотоэлементов быть не должно. Если бугорки и шероховатости остались, нужно еще раз аккуратно пройтись паяльником по шву контакта. Пользоваться необходимо маломощным паяльником.

Что нужно сделать, чтобы правильно и точно произвести соединение фотоэлектрических элементов:

  1. Если нет опыта в сборке элементов, рекомендуется воспользоваться разметочной поверхностью, на которой следует разместить элементы (фанерный лист).
  2. Расположить солнечные панели строго по разметке. Размечая, не забывать оставлять расстояние между элементами 5 мм.
  3. Пропаивая контакты пластин, обязательно следить за полярностью. Фотоэлементы должны быть правильно собраны в последовательную цепочку, иначе батарея не будет нормально работать.

Механический монтаж панелей:

  1. В корпусе сделать разметку для пластин.
  2. Солнечные элементы поместить в корпус, положив их на оргстекло. В рамке закрепить силиконовым клеем по размеченным местам. Клея много не наносить, только крохотную каплю по центру пластины. Нажимать осторожно, чтобы не повредить пластины.В корпус лучше перемещать пластины вдвоем, одному будет неудобно.
  3. Соединить все провода по краям пластин с общими шинами.

Прежде чем герметизировать панель, нужно протестировать качество пайки. Конструкцию аккуратно выносят поближе к солнечному свету и замеряют напряжение на общих шинах. Оно должно быть в пределах ожидаемых значений.

Как вариант, герметизацию можно провести следующим образом:

  1. Нанести капельки силиконового герметика между пластинами и по краям корпуса, аккуратно пальцами руки края фотоэлементов прижать к оргстеклу. Нужно, чтобы элементы как можно плотнее легли к прозрачному основанию.
  2. Поставить на все края элементов небольшой груз , допустим, головки из автомобильного набора инструментов.
  3. Дать герметику хорошо высохнуть , пластины за это время надежно зафиксируются.
  4. Затем промазать аккуратно все стыки между пластинами и краями рамки. То есть, нужно промазать в корпусе все, кроме самих пластин. Попадание герметика на края тыльной стороны пластин допустимо.

Финальная сборка солнечной батареи


  1. Сбоку корпуса установить соединительный разъем, разъем соединить с Шоттки.
  2. Закрыть с наружной стороны пластины защитным экраном из прозрачного материала. В данном случае, оргстеклом. Конструкция должна быть герметичной и исключать проникновение в нее влаги.
  3. Лицевую сторону (оргстекло) желательно обработать , например, лаком (лак PLASTIK-71).

Для чего нужен диод Шоттки? Если свет падает только на часть солнечной батареи, а другая часть затемнена, возможен выход элементов из строя.

Диоды помогают избежать поломки конструкции в таких случаях. При этом теряется мощность на 25%, но без диодов не обойтись – они шунтируют ток, ток идет в обход фотоэлементов. Чтобы падение напряжения было минимальным, необходимо применять низкоомные полупроводники, такими являются диоды Шоттки.

Преимущества и недостатки солнечной батареи


У солнечных батарей есть как преимущества, так и недостатки. Если бы были только одни плюсы от применения фотоэлектрических преобразователей, весь мир давно бы уже перешел на этот вид получения электроэнергии.

Преимущества:

  1. Автономность источника питания , нет зависимости от перебоев напряжения в централизованной электросети.
  2. Отсутствие абонентской платы за использование электроэнергией.

Недостатки:

  1. Высокая себестоимость оборудования и элементов.
  2. Зависимость от солнечного освещения.
  3. Возможность повреждения элементов солнечной батареи вследствие неблагоприятных погодных условий (град, буря, ураган).

В каких случаях целесообразно использовать установку на фотоэлектрических элементах:

  1. Если объект (дом или дача) находится на большом удалении от линии электропередач. Это может быть загородный коттедж в сельской глубинке.
  2. Когда объект расположен в южном солнечном районе.
  3. При совмещении различных видов энергии. Например, отопление частного дома с помощью печного отопления и солнечной энергии. Себестоимость маломощной солнечной станции будет не столь высока, и может быть экономически оправдана в данном случае.

Установка


Монтировать батарею необходимо по месту максимальной освещенности солнечным светом. Панели могут крепиться на крыше дома, на жестком или поворотном кронштейне.

Лицевая часть солнечной батареи должна быть обращена на юг или юго-запад под углом от 40 до 60 градусов. При монтаже нужно учитывать внешние факторы. Панели не должны загораживаться деревьями и другими предметами, на них не должна попадать грязь.

  1. Лучше покупать фотоэлементы с небольшими дефектами. Они также работоспособны, только имеют не такой красивый внешний вид. Новые элементы очень дороги, сборка солнечной батареи будет экономически не оправдана. Если нет особой спешки, пластины лучше заказать на eBay, это обойдется еще дешевле. С пересылкой и Китая нужно быть осторожнее – большая вероятность получить бракованные детали.
  2. Фотоэлементы нужно купить с небольшим запасом , велика вероятность их поломки во время монтажа, особенно, если нет опыта сборки подобных конструкций.
  3. Если элементы пока не используются , следует припрятать их в надежное место во избежание поломок хрупких деталей. Нельзя складывать пластины большими стопками – они могут лопнуть.
  4. При первой сборке следует изготовить шаблон , на котором будут размечены места расположения пластин перед сборкой. Так легче вымерять расстояния между элементами перед пайкой.
  5. Паять необходимо маломощным паяльником , и ни в коем случае не применять усилие при пайке.
  6. Для сборки корпуса удобнее применять алюминиевые уголки , деревянная конструкция менее надежная. В качестве листа с тыльной стороны элементов лучше использовать оргстекло или другой подобный материал и надежнее, чем крашеная фанера, и эстетично выглядит.
  7. Располагать фотоэлектрические панели следует в местах, где солнечное освещение будет максимальным в течение всего светового дня.

Схема электроснабжения дома


Последовательная цепь энергоснабжения частного дома на солнечных батареях выглядит следующим образом:

  1. Солнечная батарея из нескольких панелей , которые расположены на скате крыши дома, либо на кронштейне. В зависимости от энергопотребления, панелей может быть до 20 штук и больше. Батарея вырабатывает постоянный ток 12 вольт.
  2. Контроллер зарядки . Устройство предохраняет аккумуляторы от преждевременного разряда, а также ограничивает напряжение в цепи постоянного тока. Тем самым, контроллер защищает аккумуляторы от перегрузки.
  3. Инвертор напряжения . Преобразует постоянный ток в переменный ток, обеспечивая тем самым возможность потребления электроэнергии бытовыми приборами.
  4. Аккумуляторы . Для частных домов и дач ставят несколько аккумуляторов, соединяя их последовательно. Служат для накопления энергии. Энергия аккумуляторов используется в темное время суток, когда элементы солнечной батареи не вырабатывают ток.
  5. Электросчетчик .

Довольно часто в частных домах система энергоснабжения дополняется резервным генератором.

В целом, собрать солнечную батарею своими руками не так уж и сложно. Необходимы только определенные средства, терпение и аккуратность.