Как сделать лазерный гравер. Лазерный гравер своими руками – отличное решение для мастерской. Разработка основания и осей


На сборку такого гравера у автора ушло 4 месяца, его мощность составляет 2 Ватта. Это не слишком много, но вполне позволяет делать гравировку на дереве и пластике. Также устройство может резать пробковое дерево. В статье имеется весь необходимый материал для создания гравера, включая STL файлы для распечатки узлов конструкции, а также электронные схемы для подключения двигателей, лазеров и так далее.

Видео работы гравировщика:

Материалы и инструменты:

Доступ к 3D-принетру;
- стержни из нержавеющей стали 5/16";
- бронзовые втулки (для подшипников скольжения);
- диод М140 на 2 Вт;
- радиатор и кулеры для создания охлаждения диода;
- шаговые двигатели, шкивы, зубчатые ремни;
- суперклей;
- деревянный брус;
- фанера;
- болты с гайками;
- акрил (для создания вставок);
- линза G-2 и драйвер;
- термопаста;
- защитные очки;
- контроллер Arduino UNO;
- дрель, режущий инструмент, саморезы и т.д.

Процесс изготовления гравера:

Шаг первый. Создаем ось Y
Сперва в Autodesk Inventor нужно разработать каркас принтера. Затем можно приступать к распечатке элементов оси Y и к ее сборке. Первая деталь, которая печатается на 3D-принтере, нужна для того, чтобы установить шаговый мотор на ось Y, подключить стальные валы и обеспечить скольжение вдоль одного из валов оси Х.

После того как деталь будет распечатана, в нее нужно установить две бронзовые втулки, они используются в качестве опор скольжения. Чтобы снизить трение втулки нужно смазать. Это отличное решение для подобных проектов, поскольку обходится дешево.

Что касается направляющих, то они сделаны из стрежней нержавеющей стали диаметром 5/16". Нержавейка имеет небольшой коэффициент трения с бронзой, поэтому отлично подходит для подшипников скольжения.



На ось Y также устанавливается лазер, он имеет металлический корпус и достаточно сильно греется. Чтобы снизить риск перегрева нужно установить алюминиевый радиатор и кулеры для охлаждения. Автор использовал старые элементы от контроллера робота.

Помимо всего прочего в блоке для лазера 1"Х1" нужно сделать отверстие 31/64" и добавить болт к боковой грани. Блок соединяется с другой деталью, которая тоже напечатана на 3D-принтере, она будет перемещаться по оси Y. Для передачи движения используется зубчатый ремень.

После сборки модуля лазера он устанавливается на оси Y. Также на этом этапе устанавливаются шаговые двигатели, шкивы и зубчатые ремни.

Шаг второй. Создаем ось X

Для создания основания гравера использовалось дерево. Самое главное при этом, чтобы две оси X находились четко параллельно, иначе устройство будет клинить. Для перемещения вдоль координаты X используется отдельный мотор, а также приводной ремень в центре по оси Y. Благодаря такой конструкции система получилась простая и отлично работает.

Для крепления поперечной балки, которая соединяет ремень с осью Y, можно использовать суперклей. Но лучше всего для этих целей распечатать на 3D-принтере специальные кронштейны.







Шаг третий. Подключаем и проверяем электронику

В самоделке используется диод типа диод M140, можно купить и более мощный, но цена будет выше. Для фокусировки луча понадобится линза и источник регулируемого питания. Линза устанавливается на лазер с помощью термопасты. Работать с лазерами нужно исключительно в защитных очках.

Чтобы проверить, как работает электроника, автор включил ее вне станка. Для охлаждения электроники используется компьютерный кулер. Работает система на контроллере Arduino Uno, который связан с grbl. Чтобы сигнал можно было передавать в режиме онлайн, используется Universal Gcode Sender. Чтобы преобразовать векторные изображения в G-код, можно использовать Inkscape с установленным плагином gcodetools. Для управления лазером используется контакт, который контролирует работу шпинделя. Это один из самых простых примеров с применением gcodetools.





Шаг четвертый. Корпус гравировщика

Боковые грани делаются из фанеры. Поскольку шаговый двигатель при работе немного выходит за пределы корпуса, в задней грани нужно сделать прямоугольное отверстие. Помимо этого нужно не забыть сделать отверстия для охлаждения, подключения питания, а также USB порта. Края верхней и передней части корпуса также изготавливаются из фанеры, в центральную часть устанавливаются стенки из акрила. Над всеми элементами, которые установлены в нижней части бокса, крепится дополнительная платформа из дерева. Она является базой для материала, с которым работает лазер.












Для изготовления стенок используется акрил оранжевого цвета, так как он отлично поглощает лучи лазера. Важно помнить, что даже отраженный луч лазера может серьезно повредить глаз. Вот, собственно, и все, лазер готов. Можно приступать к испытаниям.

Конечно, сложные изображения получаются не очень качественные, но вот простые гравировщик выжигает без труда. Также с помощью него можно без проблем резать пробковое дерево.

Доброго дня, мозгоинженеры ! Сегодня поделюсь с вами руководством о том, как сделать лазерный резак мощностью 3Вт и рабочим столом 1.2х1.2 метра под управлением микроконтроллера Arduino.


Эта мозгоподелка родилась для создания журнального столика в стиле «пиксель-арт». Нужно было нарезать материал кубиками, но вручную это затруднительно, а через онлайн-сервис очень дорого. Тогда и появился этот 3-х ватный резак/гравер для тонких материалов, уточню, что промышленные резаки имеют минимальную мощность около 400 ватт. То есть легкие материалы, такие как пенополистирол, пробковые листы, пластик или картон, этот резак осиливает, а вот более толстые и плотные только гравирует.

Шаг 1: Материалы

Arduino R3
Proto Board – плата с дисплеем
шаговые двигатели
3-х ватный лазер
охлаждение для лазера
блок питания
регулятор DC-DC
транзистор MOSFET
платы управления двигателями
концевые выключатели
корпус (достаточно большой, чтобы вместить почти все детали списка)
зубчатые ремни
шарикоподшипники 10мм
шкивы для зубчатых ремней
шарикоподшипники
2 доски 135х 10х2 см
2 доски 125х10х2 см
4 гладких стержня диаметром 1см
различные болты и гайки
винты 3.8см
смазка
стяжки-хомуты
компьютер
циркулярная Пила
отвертка
различные сверла
наждачная бумага
тиски

Шаг 2: Электросхема


Электроцепь лазерной самоделки информативно представлена на фото, есть лишь несколько уточнений.

Шаговые двигатели: думаю, вы заметили, что два двигателя запускаются от одной платы управления. Это нужно для того чтобы одна сторона ремня не отставала от другой, то есть два двигателя работают синхронно и сохраняют натяжения зубчатого ремня, нужное для качественной работы поделки .

Мощность лазера: при настройке регулятора DC-DC убедитесь, что на лазер подается постоянное напряжение, не превышающее технические характеристики лазера, иначе вы его просто сожжете. Мой лазер рассчитан на 5В и 2.4А, поэтому регулятор выставлен на 2А и напряжение немного ниже 5В.

Транзистор MOSFET: это важная деталь данной мозгоподелки, так как именно этот транзистор включает и выключает лазер, получая сигнал от Arduino. Так как ток от микроконтроллера очень слабый, то только этот транзистор MOSFET может его воспринимать и запирать или отпирать контур питания лазера, другие транзисторы на такой слаботочный сигнал просто не реагируют. MOSFET монтируется между лазером и «землей» от регулятора постоянного тока.

Охлаждение: при создании своего лазерного резака я столкнулся с проблемой охлаждения лазерного диода, для избежания его перегрева. Проблема решилась установкой компьютерного вентилятора, с которым лазер отлично функционировал даже при работе 9 часов подряд, а простой радиатор не справлялся с задачей охлаждения. Еще я установил кулеры рядом с платами управления двигателями, так как они тоже прилично греются, даже если резак не работает, а просто включен.

Шаг 3: Сборка


В приложенных файлах находится 3D модель лазерного резака, показывающая размеры и принцип сборки рамки рабочего стола.

Челночная конструкция: она состоит одного челнока отвечающего за ось Y, и двух спаренных челнока отвечающих за ось X. Ось Z не нужна, так как это не 3D принтер, но вместо нее лазер будет попеременно включаться и выключаться, то есть ось Z заменяется глубиной прожига. Все размеры челночной конструкции я постарался отразить на фото, уточню лишь, что все установочные отверстия для стержней в бортах и челноках глубиной 1.2см.

Направляющие стержни: стержни стальные (хотя алюминиевые предпочтительней, но стальные проще достать), довольно большим диаметром в 1 см, но такая толщина стержня позволит избежать провисания. Заводская смазка со стержней удалена, а сами стержни тщательно отшлифованы шлифмашинкой и наждачной бумагой до идеальной гладкости для хорошего скольжения. А после шлифовки стержни обработаны смазкой с белым литием, которая предотвращает окисление и улучшает скольжение.

Ремни и шаговые двигатели: Для установки шаговых двигателей и зубчатых ремней я пользовался обычными инструментами и материалами, попавшимися под руку. Сначала монтируются двигатели и шарикоподшипники, а затем сами ремни. В качестве кронштейна для двигателей был использован лист металла примерно одинаковый по ширине и в два раза больше по длине, чем сам двигатель. В этом листе просверлено 4 отверстия для крепления на двигатель и два для крепления к корпусу самоделки , лист согнут под углом 90 градусов и прикручен саморезами к корпусу. С противоположной стороны от места крепления двигателя аналогичным образом установлена подшипниковая система, состоящая из болта, двух шарикоподшипников, шайбы и металлического листа. По центру этого листа сверлиться отверстие, с помощью которого он крепится к корпусу, далее лист загибается пополам и уже по центру обоих половинок сверлится отверстие для установки подшипниковой системы. На полученную таким образом пару двигатель-подшипник надевается зубчатый ремень, который крепится к деревянному основанию челнока обычным саморезом. Более понятно этот процесс представлен на фото.

Шаг 4: Софт


К счастью программное обеспечение для данной мозгоподелки бесплатно и с открытым исходным кодом. Все необходимое находится по нижеприведенным ссылкам:

Во и все что я хотел рассказать о своем лазерном резаке/гравере. Благодарю за внимание!

Удачных самоделок !

В этом посте мы расскажем вам историю о том, как построить ЧПУ лазерный станок своими руками, которую нам поведал один из подписчиков.

Предисловие

Пару месяцев назад я просматривал записи с конкурса, в котором увидел несколько довольно крутых гравировальных машин, и я подумал: «Почему бы мне не создать свою собственную?». И так я и сделал, но не хотелось копировать чужой проект, я хотел сделать свой собственный уникальный ЧПУ станок своими руками. И так началась моя история …

Технические характеристики

Этот лазерный гравер оснащен 1,8 Вт 445 нм лазерным модулем, конечно, это ничто по сравнению с промышленными лазерными резаками, которые используют лазеры более 50 Вт. Но для нас будет достаточно и этого лазера. Он может вырезать бумагу и картон, и может выгравировать все виды древесины или изделия из фанеры. Я еще не тестировал другие материалы, но уверен, что он может наносить гравировку на многие другие поверхности. Сразу зайду наперед и скажу, что он имеет большое рабочее поле размером около 500×380 мм.

Кому под силу сделать такой лазерный станок? Каждому, не важно, вы инженер, юрист, учитель или студент, как я! Все, что вам необходимо – терпение и большое желание получить действительно качественный станок.

Мне потребовалось около трех месяцев, чтобы спроектировать и построить эту гравировальную машину, в том числе я около месяца ждал детали. Конечно, такую работу можно выполнить и быстрее, но мне всего 16 лет, поэтому работать я мог только на выходных.

Нужные материалы для сборки

Понятно, что вы не сможете сделать лазерный гравер, не имея нужных деталей, поэтому я составил спецификацию с почти всем необходимым для его изготовления. Практически все детали куплены на Aliexpress, потому что это дешево, и есть бесплатная доставка для большинства товаров. Другие детали, такие как обработанные стержни и листы МДФ (можно сделать из фанеры), были куплены в местном строительном магазине. Лазер и драйвер лазера были заказаны на ebay.
Я попытался найти самые низкие цены для всех деталей (не включая доставку).

Было потрачено много времени, прежде чем я пришел к этому дизайну. Сначала я сделал несколько других, но именно этот был действительно самым красивым из всех остальных. Первым делом я нарисовал все детали в графическом редакторе и распечатал их в натуральном размере.
Весь гравер я собираю из листов МДФ толщиной 18 мм и 12 мм.
Выбор пал на этот дизайн также потому что можно было легко прикрепить ось Z и инструмент, превратив наш станок в фрезерный.

Конечно, я мог бы сделать другой, более простой дизайн … Но нет! Хотелось чего-то особенного!

Процесс сборки

Распечатав чертежи, у меня появились детали, которые необходимо было собрать в кучу. Первое, что я сделал, – это установил дверь корпуса электроники с левой стороны и замок с петлей (дверца устанавливается без трудностей, поэтому я сделал это в первую очередь. Чтобы собрать корпус для электроники, я использовал множество L-образных железных скоб с отверстиями под саморезы. Если корпус планируется изготавливать из фанеры, то предварительно необходимо просверлить в ней также отверстия под саморезы.

Сначала была взята снова левая сторона корпуса электроники и установлена на нее передняя и задняя части корпуса при помощи скоб. Я не использовал винты или гвозди для установки крышки и панели управления, а прикрутил те же скобы к стенкам и просто положил крышку с панелью на них чтобы в дальнейшем при установке электроники не возникало никаких неудобств.

Отложив корпус электроники в сторону и взяв опорную плиту и опорные части оси Х необходимо установить их таким образом, как показано на фотографиях, убедившись, что ось Х и крепление мотора находятся на правой стороне станка с ЧПУ. Теперь можно смело установить корпус электроники таким же образом, как и показано на рисунках.

Далее были взяты два 700-мм вала, нанизаны на них по два линейных подшипника на каждый, и они были зафиксированы на самом станке при помощи специальных концевых опор для шлифованных валов.
На данном этапе у меня получилось вот что:


Уберите в сторону эту половину лазерного станка на некоторое время и займитесь подвижной частью X, а ось Y поддержите и прикрепите на весу опоры вала к движущейся части оси X гайками и болтами и прикрепите двумя гайками опору на ось Х.

  1. Теперь возьмите два 500-миллиметровых вала, наденьте по одному линейному подшипнику на каждый вал, наденьте опору вала на каждый конец каждого вала и установите их на станок.
  2. Прикрепите ходовую гайку оси Y на подвижную часть оси Y с помощью гаек и болтов, и прикрутите ее к линейным подшипникам с помощью саморезов.
  3. Прикрепите ходовой винт и шаговый двигатель.
  4. Подсоедините все это к другой половине гравера и закрепите ходовой винт и шаговый двигатель.

Теперь у вас должно выйти что-то похожее на то, что изображено на этом фото:



Электроника для станка

Я также установил деревянную деталь в корпус электроники, чтобы закрепить шаговый двигатель.

Ну или можно просто положить крышку и панель на гравёре, чтобы полюбоваться проделанной работой и великолепным дизайном.»

Выводы

Это, пожалуй, и вся информацию, которую он нам донес, но это довольно неплохая инструкция для тех, у кого есть мечта собрать собственноручно хороший самодельный лазерный станок для домашних и хоббийных целей.

Сама сборка лазерного гравера не особо затратная, поскольку количество деталей минимально, да и стоимость их не особо высока. Самыми дорогими деталями являются, наверное, шаговые двигатели, направляющие и, конечно же, детали самой лазерной головки с системой охлаждения.

Именно этот станок заслуживает особого внимания, поскольку не каждый лазерный гравер позволяет быстро устанавливать на 3 ось фрезерную машинку и превращать станок в полноценный ЧПУ фрезер.

В заключение хочется сказать: если вам действительно хочется самому собрать качественный станок ЧПУ своими руками, который будет служить верой и правдой долгие годы, не нужно экономить на каждой детали и пытаться сделать направляющие ровнее заводских или заменять ШВП на шпильку с гайкой. Такой станок работать хоть и будет, но качество его работы и постоянная настройка механики и программного обеспечения просто расстроит вас, заставив пожалеть о потраченном на него времени и средствах.

Граверы широко применяются в различных отраслях производства не только для гравировки различных материалов, но и для сверления миниатюрных отверстий, полирования, шлифования, фрезерования. Такие же операции с их помощью можно выполнять в домашних условиях. Если это требуется только изредка, или нужно просто сэкономить на покупке инструмента, то мини-дрель можно сделать самостоятельно из ненужной техники, которая часто лежит неиспользуемая в гаражах или кладовых комнатах. С помощью самодельных бормашин можно будет выполнять такие же операции, как и с заводским инструментом аналогичной мощности, только понадобится применять соответствующие насадки.

Граверы по особенностям своего функционирования делят на фрезерные и лазерные. В первых материал обрабатывается различными насадками. В лазерных моделях всю работу выполняет лазерный луч — это бесконтактный способ гравировки . При этом такое устройство относится к категории высокотехнологичного оборудования. Но самодельный гравер возможно сделать и в домашних условиях.

Чтобы создать лазерный гравер своими руками, понадобятся следующие детали, инструменты и материалы:

  • шаговые электродвигатели из dvd-привода;
  • вычислительная платформа Arduino;
  • плата Proto Board с дисплеем;
  • концевые выключатели для двигателей;
  • лазерный модуль (например, мощностью 3 Вт);
  • устройство регулировки величины постоянного напряжения;
  • система охлаждения лазера;
  • MOSFET (транзистор);
  • платы для сборки элементов управления электродвигателями;
  • корпус;
  • зубчатые шкивы и ремни для них;
  • различных размеров подшипники;
  • доски из дерева: 2 штуки размером 135х10х2 см и еще две — 125х10х2 см;
  • 4 круглых металлических стержня сечением 10 мм;
  • смазка;
  • хомуты, болты с шайбами и гайками;
  • тиски;
  • слесарные инструменты;
  • сверла;
  • электролобзик или циркулярная пила;
  • напильники либо наждачная бумага;
  • компьютер или ноутбук.

Шаговые электромоторы можно взять не только из DVD, но и из принтера, который практически не используется.

Станок собирают по такому алгоритму:

  • создают основание;
  • монтируют направляющие с подвижными каретками;
  • собирают электрическую схему;
  • устанавливают нужные программы на компьютер;
  • проводят юстировку (настройку) лазерной головки;
  • проверяют работоспособность станка.

Схема подсоединения шаговых электрических моторов, взятых из струйного принтера либо DVD, показана на фотографии ниже.

Вся последовательность действий, позволяющая собрать лазерный гравер на arduino, в деталях продемонстрирована в видеоролике далее.

Созданный ЧПУ-гравер обойдется гораздо дешевле , чем любые лазерные модели заводского производства. Его можно будет использовать для изготовления печатей, для фоторезиста, для работ с деревом, фанерой, пластиком, картоном, пенополистиролом и пробковыми листами. Также возможно выполнение гравировки по металлу.

Сборка электрического гравера со штативом и гибким валом

Электрический гравер – это самая распространенная в домашних условиях разновидность данного рода инструментов. Чтобы сделать функционально полноценное устройство самостоятельно, способное соперничать с аналогами промышленного производства, понадобится электродвигатель, который работает от переменного тока 220 V . Такие электрические моторы можно взять со следующей техники:

  • катушечных магнитофонов советского образца;
  • DVD-проигрывателей;
  • стиральных машин;
  • угловых шлифовальных машин;
  • электрических швейных машин.

Последний вариант является оптимальным, потому что есть возможность регулировки числа оборотов в достаточно широком диапазоне с помощью встроенного реостата.

Для бытового использования достаточно бормашины со скоростью вращения двигателя на холостом ходу до 6 тысяч оборотов в минуту.

Держать в одной руке электромотор от любой из перечисленных разновидностей техники неудобно, а также в большинстве случаев просто невозможно. Поэтому понадобится гибкий вал для гравера . При этом общий вид будущего устройства получится, приблизительно, как на фотографии далее.

Функциональные возможности создаваемого приспособления для гравирования будут зависеть от применяемых при сборке материалов и механизмов. Мотор можно поставить на столе, но удобнее сделать штатив для гравера , вернее его подобие.

Изготовление гибкого вала

С гибким валом все относительно просто. Его можно сделать несколькими способами:

  • из старого приводного вала, например, от стоматологической бормашины;
  • воспользовавшись тросиком спидометра мотоцикла либо автомобиля.

Рабочую насадку на вал можно также использовать от бормашины либо изготовить самостоятельно из разных материалов, например, из дерева, текстолита, пластиковых труб. Из текстолита приспособление (ручку) для удержания оснастки делают так:

  • отрезают 2 текстолитовые платины (толщина листа должна быть около 1 см) размером примерно 2 на 10 см;
  • соединяют их вместе и обтачивают напильником или на наждаке снаружи, чтобы получился цилиндр;
  • протачивают с внутренней стороны пазы;
  • металлическими кольцами фиксируют части друг с другом;
  • в переднюю часть ручки вставляют трубочку, под патрон, состоящий из двух отдельных половинок, соединяемых при помощи болта.

В итоге получится рукоять, как на фото ниже.

Сделанное внутреннее отверстие между текстолитовыми пластинами должно быть такого сечения, чтобы не препятствовать свободному вращению тросика. В патрон можно будет вставлять насадки с диаметром хвостовиков от 2 до 5 мм.

Сборка гравировальной установки

Очень просто сделать штатив (основание для установки электродвигателя) из фанеры либо того же текстолита. Для этого поступают так:

  • вырезают из листа материала несколько кусков (достаточно 4) соответствующего электродвигателю размера;
  • к одному из фрагментов прикрепляют мотор с помощью хомутов;
  • собирают короб;
  • в передней части просверливают отверстие под гибкий вал.

Созданную конструкцию подвешивают к стене.

Удобно использовать заводской держатель на струбцинах для гравера, если позволяют размеры электродвигателя. Крепление подсоединяется к любому столу. Но такое приспособление потребуется приобрести дополнительно.

Дальнейшую сборку гравировального устройства выполняют в такой последовательности:

  • с помощью муфты, созданной из просверленного болта, соединяют тросик с валом электродвигателя;

  • одевают на тросик резиновый шланг соответствующего диаметра и присоединяют к нему сделанную ручку;

  • устанавливают пусковую кнопку;
  • подсоединяют оборудование к сети;

  • проверяют работоспособность сделанного приспособления.

Самодельная бормашина позволит обрабатывать древесину, кость, метал, стекло, пластик, керамические заготовки, а также разные металлы, природный и искусственный камень.

Можно также применять при создании самодельных прямошлифовальных машин электромоторы, рассчитанные на 380 V , но если их можно приспособить на 220. В таких случаях понадобится дополнительно повозиться. Информации по данному вопросу много как в интернете, так и в книгах по электротехнике.

Делаем мини-дрель из моторчика

Случается, что в домашних условиях требуется сделать маленькие отверстия в дереве либо пластике, при этом сверла от дрели не подходят. В таких случаях поможет самодельная мини-дрель из моторчика. С ее помощью может также выполняться гравировка по дереву . А если присутствует интерес к радиолюбительству, то используя созданный инструмент можно сверлить и резать платы.

Чтобы создать самодельное приспособление, потребуется взять миниатюрный электродвигатель от старого магнитофона . Подойдут даже различные модели моторчиков от детских игрушек. Если в качестве привода использовать мини-двигатель от магнитофона на 12 V, то еще потребуются такие материалы и детали:

  • блок питания или несколько батарей (аккумулятор) с выходом 12 V;
  • отрезок трубы из пластика (около 10 см длиной) таким сечением, чтобы внутрь можно было вставить миниатюрный электромотор;
  • термоустойчивый клей;
  • кнопка включения;
  • проводки для электрических соединений.

Мини-дрель своими руками собирают, действуя по следующему алгоритму:

  • с помощью электродрели или ножа в трубке делают отверстие под переключатель;
  • смазывают моторчик клеем, чтобы зафиксировать его внутри будущего корпуса;

  • вставляют электродвигатель в трубку;
  • любой из проводов, по которым осуществляется питание моторчика, высовывают в просверленное в корпусе ранее отверстие, а другой конец оставляют с задней стороны корпуса;

  • в отверстие под кнопку вставляют один проводок от блока питания;
  • припаивают с помощью паяльника к высунутым концам переключатель, аккуратно изолируя при этом контакты;

  • оставшиеся с торца трубки два проводка (от кнопки и моторчика) подсоединяют к разъему для подсоединения блока питания;

  • отрезают горлышко от любой пластиковой бутылки;
  • делают в крышке по центру отверстие под разъем и склеивают данные детали;
  • приклеивают горлышко к трубке;

  • подключают собранную мини дрель к блоку питания;

  • нажатием кнопки проверяют работоспособность самоделки.

Вольтаж питающего блока следует подбирать, чтобы он соответствовал рабочему напряжению используемого электромоторчика.

Чтобы сделать мини дрель автономной, достаточно просто приспособить к ней батарейки.

Самодельный дремель из дрели и блендера

Если имеется старый либо ненужный блендер, то из него также несложно сделать мини-дрель. У этого бытового прибора уже есть удобная рукоять. Кроме самого блендера, понадобятся еще такие приспособления и дополнительные детали:

  • инструменты, чтобы разобрать устройство (отвертки с разными наконечниками, плоскогубцы);
  • штангенциркуль либо линейка;
  • цанговый патрон;
  • паяльник с набором для пайки;
  • напильник для финишной обработки, наждачная бумага;
  • переключатель.

Можно обойтись и без последней детали, но тогда потребуется во время работы с прямошлифовальной машиной постоянно зажимать рукой кнопку включения.

Гравер из блендера создают так:

  • аккуратно разбирают бытовую технику;
  • достают внутренние детали: электродвигатель и печатную плату, которая управляет работой устройства;
  • используя штангенциркуль, измеряют диаметр шпинделя, чтобы приобрести подходящий под него цанговый патрон;
  • если электромотор загрязнен чем-либо, например, ржавчиной, то его тщательно, с осторожностью, чтобы не повредить обмотки, очищают;
  • фиксируют купленный цанговый патрон (либо сделанный самостоятельно) на шпинделе;
  • кнопку включения, уже имеющуюся на блендере, заменяют переключателем: перепаивают контакты проводов;
  • приспосабливают в корпусе бытового прибора отверстие под новый переключатель;
  • устанавливают электродвигатель с платой на свои места внутри корпуса;
  • собирают инструмент.

В зависимости от модели переделываемого блендера может понадобиться сделать дополнительные отверстия в его корпусе, либо расширять с помощью напильника уже существующие. Проделать это не составит никаких проблем

Весь описанный процесс сборки дремеля из блендера детально продемонстрирован в видеоролике ниже.

Можно не переделывать блендер, а просто подсоединить к нему гибкий вал для гравера заводского производства. Способ состыковки показан в ролике далее.

Можно также изготовить гравер из дрели. Сборка вариантов с гибким валом и без него показана в следующих видеороликах.

Изготовление гравера из 3D-принтера

Обыкновенный 3D-принтер является хорошей основой для создания гравера, с помощью которого можно будет резать различные материалы, делать поделки и выполнять другие операции. Чтобы модернизировать имеющееся устройство, потребуется дополнительно установить плату , которая будет питать оперативные цепи оборудования и лазерный модуль.

Гравировальный станок, созданный из 3D-принтера, продемонстрирован в следующем видеоролике.

Кроме рассмотренных простейших способов создания самодельной гравировальной машинки из 3D-принтера, маленького электромотора, небольшого электродвигателя, блендера и дрели существуют также другие варианты. При этом за основу используют как данную технику, так и другие электроинструменты. Народные умельцы постоянно придумывают новые модификации, проявляя конструкторскую фантазию. Реализуя на практике любой из приведенных вариантов или самостоятельную разработку, следует обеспечить безопасность создаваемой самоделки. Для этого необходимо хорошо изолировать электрические контакты и надежно выполнить сборку оборудования.

Внимание! Будьте осторожны при использовании лазеров. Лазер, применяемый в этой машине, может вызвать повреждение зрения и, возможно, слепоту. При работе с мощными лазерами, более 5 мВт, всегда надевайте пару защитных очков, предназначенных для блокировки длины волны лазера.

Лазерный гравер на Arduino – приспособление, роль которого – гравировка древесины и других материалов. За последние 5 лет лазерные диоды продвинулись вперед, что позволило сделать достаточно мощные граверы без особой сложности управления лазерными трубами.

Стоит осторожно гравировать другие материалы. Так, например, при использовании в работе с лазерным прибором пластмассы появится дым, который содержит опасные газы при сжигании.

В этом уроке я постараюсь дать направление мысли, а со временем мы создадим более подробный урок по реализации этого непростого устройства.

Для начала предлагаю посмотреть того как выглядел весь процесс создания гравера у одного радиолюбителя:

Сильные шаговые двигатели также требуют драйверов, чтобы максимально использовать их. В данном проекте взят специальный шаговый драйвер для каждого мотора.

Ниже приведены некоторые сведения о выбранных компонентах:

  1. Шаговый двигатель – 2 штуки.
  2. Размер кадра – NEMA 23.
  3. Крутящий момент 1.8 Нм на 255 унций.
  4. 200 шагов/оборотов – за 1 шаг 1,8 градусов.
  5. Ток – до 3,0 А.
  6. Вес – 1,05 кг.
  7. Биполярное 4-проводное соединение.
  8. Шаговый драйвер – 2 штуки.
  9. Цифровой степпинг-драйв.
  10. Микросхема.
  11. Выходной ток – от 0,5 А до 5,6 А.
  12. Ограничитель выходного тока – снижает риск перегрева двигателей.
  13. Сигналы управления: входы Step и Direction.
  14. Частота импульсного входа – до 200 кГц.
  15. Напряжение питания – 20 В – 50 В постоянного тока.

Для каждой оси двигатель непосредственно управляет шариковым винтом через соединитель мотора. Двигатели монтируются на раме с использованием двух алюминиевых углов и алюминиевой пластины. Алюминиевые углы и плита имеют толщину 3 мм и достаточно прочны, чтобы поддерживать двигатель (1 кг) без изгибов.

Важно! Нужно правильно выровнять вал двигателя и шариковый винт. Соединители, которые используются, имеют некоторую гибкость, чтобы компенсировать незначительные ошибки, но если ошибка выравнивания слишком велика, они не сработают!

Еще один процесс создания данного устройства можно посмотреть на видео:

2. Материалы и инструменты

Ниже представлена таблица с материалами и инструментами, необходимыми для проекта «лазерный гравер на Aрдуино».

Пункт Поставщик Количество
Шаговый двигатель NEMA 23 + драйвер eBay (продавец: primopal_motor) 2
Диаметр 16 мм, шаг 5 мм, шариковый винт длиной 400 мм (тайваньский) eBay (продавец: silvers-123) 2
16-мм ая поддержка BK12 с шариковым винтом (приводной конец) eBay (продавец: silvers-123) 2
16 мм BF12 Поддержка шарикового винта (без ведомого конца) eBay (продавец: silvers-123) 2
16 вал длиной 500 мм (продавец: silvers-123) 4
(SK16) 16 опоры вала (SK16) (продавец: silvers-123) 8
16 линейный подшипник (SC16LUU) eBay (продавец: silvers-123) 4
eBay (продавец: silvers-123) 2
Держатель вала 12 мм (SK12) (продавец: silvers-123) 2
A4-размер 4,5 мм прозрачный акриловый лист eBay (продавец: acrylicsonline) 4
Алюминиевая Плоская штанга 100 мм x 300 мм x 3 мм eBay (продавец: willymetals) 3
50 мм x 50 мм 2.1 м Алюминиевый забор Любой тематический магазин 3
Алюминиевая Плоская штанга Любой тематический магазин 1
Алюминиевый угол Любой тематический магазин 1
Алюминиевый угол 25 мм x 25 мм x 1 м x 1,4 мм Любой тематический магазин 1
Винты с головной головкой M5 (различные длины) boltsnutsscrewsonline.com
M5 гайки boltsnutsscrewsonline.com
M5 шайбы boltsnutsscrewsonline.com

3. Разработка основания и осей

Машина использует шариковые винты и линейные подшипники для управления положением и движением осей X и Y.

Характеристики шариковых винтов и аксессуаров машины:

  • 16 мм шариковый винт, длина – 400 мм-462 мм, включая обработанные концы;
  • шаг – 5 мм;
  • C7 рейтинг точности;
  • BK12/BF12 шариковые опоры.

Так как шариковая гайка состоит из шариковых подшипников, катящихся в гусеничном ходу против шарикового винта очень малого трения, это означает, что двигатели могут работать на более высоких скоростях без остановки.

Вращательная ориентация шариковой гайки блокируется с помощью алюминиевого элемента. Базовая плита крепится к двум линейным подшипникам и к шариковой гайке через алюминиевый угол. Вращение вала Ballscrew приводит в линейное движение опорную плиту.

4. Электронная составляющая

Выбранный лазерный диод – это диод мощностью 1,5 Вт, 445 нм, установленный в корпусе размером 12 мм, с фокусируемым стеклянным объективом. Такие могут быть найдены, предварительно собраны, на eBay. Так как это лазер 445 нм, свет, который он производит, является видимым синим светом.

Лазерный диод требует радиатора при работе на высоких уровнях мощности. При конструировании гравера используются две алюминиевые опоры для SK12 12 мм, как для крепления, так и для охлаждения лазерного модуля.

Интенсивность выхода лазера зависит от тока, который проходит через него. Диод сам по себе не может регулировать ток, и, если он подключен непосредственно к источнику питания, он будет увеличивать ток до тех пор, пока он не разрушится. Таким образом, для защиты лазерного диода и управления его яркостью требуется регулируемая схема тока.

Еще один вариант схемы соединения микроконтроллера и электронных деталей:

5. Программное обеспечение

Эскиз Arduino интерпретирует каждый блок команд. Существует несколько команд:

1 – переместите ПРАВО на один пиксель FAST (пустой пиксель).

2 – переместите ПРАВО на один пиксель SLOW (сгоревший пиксель).

3 – переместите ЛЕВЫЙ на один пиксель FAST (пустой пиксель).

4 – переместите LEFT на один пиксель SLOW (сгоревший пиксель).

5 – перемещение вверх на один пиксель FAST (пустой пиксель).

6 – переместите UP на один пиксель SLOW (сгоревший пиксель).

7 – переместите ВНИЗ одним пикселем FAST (пустой пиксель).

8 – переместите ВНИЗ одним пикселем SLOW (сгоревший пиксель).

9 – включить лазер.

0 – выключить лазер.

r – вернуть оси в исходное положение.

С каждым символом Arduino запускает соответствующую функцию для записи на выходные выводы.

Arduino контролирует скорость двигателя через задержки между ступенчатыми импульсами . В идеальном случае машина будет запускать двигатели с одинаковой скоростью, независимо от того, гравирует ли ее изображение или пропускает пустой пиксель. Однако из-за ограниченной мощности лазерного диода машина должна немного замедляться при записи пикселя . Вот почему есть две скорости для каждого направления в списке символов команд выше.

Скетч 3-х программ для лазерного Arduino-гравера ниже:

/* Stepper motor control program */ // constants won"t change. Used here to set pin numbers: const int ledPin = 13; // the number of the LED pin const int OFF = 0; const int ON = 1; const int XmotorDIR = 5; const int XmotorPULSE = 2; const int YmotorDIR = 6; const int YmotorPULSE = 3; //half step delay for blank pixels - multiply by 8 (<8ms) const unsigned int shortdelay = 936; //half step delay for burnt pixels - multiply by 8 (<18ms) const unsigned int longdelay = 2125; //Scale factor //Motor driver uses 200 steps per revolution //Ballscrew pitch is 5mm. 200 steps/5mm, 1 step = 0.025mm //const int scalefactor = 4; //full step const int scalefactor = 8; //half step const int LASER = 51; // Variables that will change: int ledState = LOW; // ledState used to set the LED int counter = 0; int a = 0; int initialmode = 0; int lasermode = 0; long xpositioncount = 0; long ypositioncount = 0; //*********************************************************************************************************** //Initialisation Function //*********************************************************************************************************** void setup() { // set the digital pin as output: pinMode(ledPin, OUTPUT); pinMode(LASER, OUTPUT); for (a = 2; a <8; a++){ pinMode(a, OUTPUT); } a = 0; setinitialmode(); digitalWrite (ledPin, ON); delay(2000); digitalWrite (ledPin, OFF); // Turn the Serial Protocol ON Serial.begin(9600); } //************************************************************************************************************ //Main loop //************************************************************************************************************ void loop() { byte byteRead; if (Serial.available()) { /* read the most recent byte */ byteRead = Serial.read(); //You have to subtract "0" from the read Byte to convert from text to a number. if (byteRead!="r"){ byteRead=byteRead-"0"; } //Move motors if(byteRead==1){ //Move right FAST fastright(); } if(byteRead==2){ //Move right SLOW slowright(); } if(byteRead==3){ //Move left FAST fastleft(); } if(byteRead==4){ //Move left SLOW slowleft(); } if(byteRead==5){ //Move up FAST fastup(); } if(byteRead==6){ //Move up SLOW slowup(); } if(byteRead==7){ //Move down FAST fastdown(); } if(byteRead==8){ //Move down SLOW slowdown(); } if(byteRead==9){ digitalWrite (LASER, ON); } if(byteRead==0){ digitalWrite (LASER, OFF); } if (byteRead=="r"){ //reset position xresetposition(); yresetposition(); delay(1000); } } } //************************************************************************************************************ //Set initial mode //************************************************************************************************************ void setinitialmode() { if (initialmode == 0){ digitalWrite (XmotorDIR, OFF); digitalWrite (XmotorPULSE, OFF); digitalWrite (YmotorDIR, OFF); digitalWrite (YmotorPULSE, OFF); digitalWrite (ledPin, OFF); initialmode = 1; } } //************************************************************************************************************ // Main Motor functions //************************************************************************************************************ void fastright() { for (a=0; a 0){ fastleft(); } if (xpositioncount < 0){ fastright(); } } } void yresetposition() { while (ypositioncount!=0){ if (ypositioncount > 0){ fastdown(); } if (ypositioncount < 0){ fastup(); } } }

6. Запуск и настройка

Arduino представляет мозг для машины. Он выводит сигналы шага и направления для шаговых драйверов и сигнала разрешения лазера для драйвера лазера. В текущем проекте для управления машиной требуется только 5 выходных контактов. Важно помнить, что основания для всех компонентов должны быть связаны друг с другом.

7. Проверка работоспособности

Эта схема требует, по меньшей мере, питания 10 В постоянного тока, и имеет простой входной сигнал включения/выключения, который предоставляется Arduino. Микросхема LM317T представляет собой линейный регулятор напряжения, который настроен, как регулятор тока. В схему включен потенциометр, позволяющий регулировать регулируемый ток.