Увеличить амперы в блоке питания 95а. Разгон блока питания. Как повысить постоянное напряжение

Бывает, что, собирая то или иное устройство, требуется определиться с выбором источника питания. Это чрезвычайно важно, когда устройствам необходим мощный блок питания. Приобрести железные трансформаторы с необходимыми характеристиками на сегодняшний день не составляет труда. Но они довольно дорогостоящие, а большие размеры и вес являются их главными недостатками. А сборка и наладка хороших импульсных блоков питания весьма сложная процедура. И многие не берутся за это.

Далее, вы узнаете о том, как собрать мощный и при этом несложный блок питания, взяв за основу конструкции электронный трансформатор. По большому счету, разговор пойдет об увеличении мощности таких трансформаторов.

Для переделки был взят 50-ваттный трансформатор.

Планировалось увеличить его мощность до 300 Вт. Этот трансформатор был приобретен в ближайшем магазине и стоил примерно 100 р.

Стандартная схема трансформатора выглядит следующим образом:

Трансформатор представляет собой обычный двухтактный полумостовой автогенераторный инвертор. Симметричный динистор является основным компонентом, осуществляющим запуск схемы, поскольку он подает первоначальный импульс.

В схеме задействованы 2 высоковольтных транзистора с обратной проводимостью.

Схема трансформатора до переделки содержит следующие компоненты:

  1. Транзисторы MJE13003.
  2. Конденсаторы 0,1 мкФ, 400 В.
  3. Трансформатор, имеющий 3 обмотки, две из которых являются задающими и имеют по 3 витка провода сечением 0,5 кв. мм. Еще одна в качестве обратной связи по току.
  4. Входной резистор (1 Ом) используется как предохранитель.
  5. Диодный мост.

Несмотря на отсутствие в этом варианте защиты от КЗ, электронный трансформатор работает без сбоев. Назначение устройства – это работа с пассивной нагрузкой (к примеру, офисные «галогенки»), поэтому стабилизация выходного напряжения отсутствует.

Что касается основного силового трансформатора, то его вторичная обмотка выдает около 12 В.

Теперь взгляните на схему трансформатора с увеличенной мощностью:

В ней стало даже меньше компонентов. Из первоначальной схемы были взяты трансформатор обратной связи, резистор, динистор и конденсатор.

Оставшиеся детали были извлечены из старых компьютерных БП, а это 2 транзистора, диодный мост и силовой трансформатор. Конденсаторы были приобретены отдельно.

Транзисторы не помешает заменить на более мощные (MJE13009 в корпусе TO220).

Диоды были заменены на готовую сборку (4 А, 600 В).

Также годятся и диодные мосты от 3 А, 400 В. Емкость должна составлять 2,2 мкФ, но можно и 1,5 мкФ.

Силовой трансформатор был изъят из БП формата ATX на 450 Вт. На нем были удалены все штатные обмотки и намотаны новые. Первичная обмотка была намотана тройным проводом 0,5 кв. мм в 3 слоя. Общее количество витков – 55. Необходимо следить за аккуратностью намотки, а также за ее плотностью. Каждый слой изолировался синей изолентой. Расчет трансформатора производился опытным путем, и была найдена золотая середина.

Вторичная обмотка наматывается из расчета 1 виток – 2 В, но это лишь в том случае если сердечник такой же, как в примере.

При первом включении обязательно использовать страховочную лампу накаливания на 40-60 Вт.

Стоит заметить, что в момент запуска лампа не вспыхнет, поскольку после выпрямителя нет сглаживающих электролитов. На выходе высокая частота, поэтому для того чтобы делать конкретные замеры, необходимо сначала выпрямить напряжение. Для этих целей был использован мощный сдвоенный диодный мост, собранный из диодов КД2997. Мост выдерживает токи до 30 А, если прикрепить к нему радиатор.

Вторичная обмотка предполагалась на 15 В, хотя на деле получилось чуть больше.

В качестве нагрузки было взято все, что оказалось под рукой. Это мощная лампа от кинопроектора на 400 Вт при напряжении в 30 В и 5 20-ваттных ламп на 12 В. Все нагрузки подключались параллельно.

Биометрический замок – Схема и сборка ЖК дисплея

Изредка нужно увеличить силу происходящего в электрической цепи тока . В данной статье будут рассмотрены основные методы увеличения силы тока без применения трудных устройств.

Вам понадобится

  • Амперметр

Инструкция

1. Согласно закону Ома для электрических цепей непрерывного тока:U=IR, где:U – величина подаваемого на электрическую цепь напряжения,R – полное сопротивление электрической цепи,I – величина происходящего по электрической цепи тока,для определения силы тока надобно поделить напряжение, подводимое к цепи на ее полное сопротивление. I=U/RСоответственно, для того дабы увеличить силу тока, дозволено увеличить подаваемое на вход электрической цепи напряжение либо уменьшить ее сопротивление.Сила тока увеличится, если увеличить напряжение. Увеличение тока при этом будет пропорционально возрастанию напряжения. Скажем, если цепь сопротивлением 10 Ом была подключена к стандартному элементу питания напряжением 1,5 Вольта, то происходящий по ней ток составлял:1,5/10=0,15 А (Ампер). При подключении к этой цепи еще одного элемента питания напряжением 1,5 В всеобщее напряжение станет 3 В, а происходящий по электрической цепи ток повысится до 0,3 А.Подключение осуществляется «ступенчато, то есть плюс одного элемента питания присоединяется к минусу иного. Таким образом, объединив ступенчато довольное число источников питания, дозволено получить нужное напряжение и обеспечить протекание тока требуемой силы. Объединенные в одну цепь несколько источников напряжения именуются батареей элементов. В быту такие конструкции обыкновенно называют «батарейками (даже если источник питания состоит каждого из одного элемента).Впрочем на практике возрастание силы тока может несколько отличаться от расчетного (пропорционального увеличению напряжения). В основном это связано с дополнительным нагревом проводников цепи, протекающим при увеличении проходящего по ним тока. При этом, как водится, происходит увеличение сопротивления цепи, что приводит к снижению силы тока.Помимо того, увеличение нагрузки на электрическую цепь может привести к ее «перегоранию либо даже возгоранию. Исключительно внимательным надобно быть при эксплуатации электробытовых приборов, которые могут трудиться лишь при фиксированном напряжении.

2. Если уменьшить полное сопротивление электрической цепи, то сила тока также увеличится. Согласно закону Ома увеличение силы тока будет пропорционально уменьшению сопротивления. Скажем, если напряжение источника питания составляло 1,5 В, а сопротивление цепи было 10 Ом, то по такой цепи проходил электрический ток величиной 0,15 А. Если после этого сопротивление цепи уменьшить в два раза (сделать равным 5 Ом), то происходящий по цепи ток увеличится в два раза и составит 0,3 Ампера.Крайним случаем уменьшения сопротивления нагрузки является короткое замыкание, при котором сопротивление нагрузки фактически равно нулю. Безмерного тока при этом, безусловно, не появляется, потому что в цепи имеется внутреннее сопротивление источника питания. Больше существенного уменьшения сопротивления дозволено добиться, если крепко охладить проводник. На этом результате сверхпроводимости основано приобретение токов большой силы.

3. Для возрастания силы переменного тока применяются всевозможные электронные приборы, в основном – трансформаторы тока, применяемые, скажем, в сварочных агрегатах. Сила переменного тока возрастает также при понижении частоты (потому что в итоге поверхностного результата понижается энергичное сопротивление цепи).Если в цепи переменного тока присутствуют энергичные сопротивления, то сила тока увеличится при увеличении емкости конденсаторов и уменьшении индуктивности катушек (соленоидов). Если в цепи имеются только емкости (конденсаторы), то сила тока увеличится при увеличении частоты. Если же цепь состоит из катушек индуктивности, то сила тока увеличится при уменьшении частоты тока.

По закону Ома, возрастание тока в цепи допустимо при выполнении правда бы одного из 2-х условий: увеличение напряжения в цепи либо уменьшение ее сопротивления. В первом случае поменяйте источник тока на иной, с большей электродвижущей силой; во втором – подберите проводники с меньшим сопротивлением.

Вам понадобится

  • обычный тестер и таблицы для определения удельных сопротивлений веществ.

Инструкция

1. Согласно закону Ома, на участке цепи сила тока зависит от 2-х величин. Она прямо пропорциональна напряжению на этом участке и обратно пропорциональна его сопротивлению. Всеобщая связанность описывается уравнением, которое выводится непринужденно из закона Ома I=U*S/(?*l).

2. Соберите электрическую цепь, которая содержит источник тока , провода и покупатель электроэнергии. В качестве источника тока используйте выпрямитель с вероятностью регулировки ЭДС. Подключите цепь к такому источнику, заранее установив в нее тестер ступенчато покупателю, настроенный на измерение силы тока . Увеличивая ЭДС источника тока , снимайте показания с тестера, по которым дозволено сделать итог, что при увеличении напряжения на участке цепи сила тока в нем пропорционально увеличится.

3. 2-й метод увеличения силы тока – уменьшение сопротивления на участке цепи. Для этого по особой таблице определите удельное сопротивление данного участка. Дабы сделать это, заранее узнайте, из какого материала сделаны проводники. Для того дабы увеличить силу тока , установите проводники с меньшим удельным сопротивлением. Чем поменьше эта величина, тем огромнее сила тока на данном участке.

4. Если нет других проводников, измените размеры тех, которые имеются в наличии. Увеличьте площади их поперечного сечения, параллельно им установите такие же проводники. Если ток течет по одной жиле провода, параллельно установите несколько жил. Во сколько раз увеличится площадь сечения провода, во столько раз усилится ток. Если есть вероятность, укоротите используемые провода. Во сколько раз уменьшится длина проводников, во столько раз увеличиться сила тока .

5. Методы возрастания силы тока дозволено комбинировать. Скажем, если увеличить площадь поперечного сечения в 2 раза, уменьшить длину проводников в 1,5 раза, а ЭДС источника тока увеличить в 3 раза, получите возрастание силы тока вы 9 раз.

Слежения показывают, что если проводник с током разместить в магнитное поле, то он начнет двигаться. Это значит, что на него действует некая сила. Это и есть сила Ампера. От того что для ее появления нужно присутствие проводника, магнитного поля и электрического тока, метаморфоза параметров этих величин и дозволит увеличить силу Ампера.

Вам понадобится

  • – проводник;
  • – источник тока;
  • – магнит (непрерывный либо электро).

Инструкция

1. На проводник с током в магнитном поле действует сила, равная произведению магнитной индукции магнитного поля B, силы тока, происходящего по проводнику I, его длины l и синуса угла? между вектором магнитной индукции поля и направлением тока в проводнике F=B?I?l?sin(?).

2. Если угол между линиями магнитной индукции и направлением силы тока в проводнике острый либо тупой, сориентируйте проводник либо поле таким образом, дабы данный угол стал прямым, то есть между вектором магнитной индукции и током должен быть прямой угол, равный 90?. Тогда sin(?)=1, а это наивысшее значение для этой функции.

3. Увеличьте силу Ампера , действующую на проводник, увеличив значение магнитной индукции поля, в котором он размещен. Для этого возьмите больше сильный магнит. Используйте электромагнит, тот, что разрешает получить магнитное поле разной интенсивности. Увеличьте ток в его обмотке, и индуктивность магнитного поля начнет возрастать. Сила Ампера увеличится пропорционально магнитной индукции магнитного поля, скажем, увеличив ее 2 раза, получите увеличение силы тоже в 2 раза.

4. Сила Ампера зависит от силы тока в проводнике. Присоедините проводник к источнику тока с изменяемым ЭДС. Увеличьте силу тока в проводнике за счет увеличения напряжения на источнике тока, либо замените проводник на иной, с такими же геометрическими размерами, но с меньшим удельным сопротивлением. Скажем, замените алюминиевый проводник на медный. При этом у него должна быть такая же площадь поперечного сечения и длина. Увеличение силы Ампера будет прямо пропорционально увеличению силе тока в проводнике.

5. Для увеличения значения силы Ампера увеличьте длину проводника, тот, что находится в магнитном поле. При этом неукоснительно рассматривайте, что при этом пропорционально уменьшится сила тока, следственно примитивное удлинение результата не даст, единовременно доведите значение силы тока в проводнике до начального, увеличивая напряжение на источнике.

Видео по теме

Видео по теме

Разгон блока питания.

Автор не несет ответственности за выход из строя каких-то компонент, произошедший в результате разгона. Используя данные материалы в любых целях, конечный пользователь принимает на себя всю ответственность. Материалы сайта представлены "as is"."

Вступление.

Этот эксперимент с частотой я затеял из-за не хватающей мощности БП.

Когда компьютер покупался его мощности вполне хватало для этой конфигурации:

AMD Duron 750Mhz / RAM DIMM 128 mb / PC Partner KT133 / HDD Samsung 20Gb / S3 Trio 3D/2X 8Mb AGP

Для примера две схемы:

Частота f для этой схемы получилась 57 кГц.


А для этой частота f равна 40 кГц.

Практика.

Частоту можно изменить заменив конденсатор C или(и) резистор R на другой номинал.

Было бы правильно поставить конденсатор с меньшей емкостью, а резистор заменить на последовательно соединенные постоянный резистор и переменный типа СП5 с гибкими выводами.

Затем, уменьшая его сопротивление, измерять напряжение, пока напряжение не достигнет 5.0 вольт. Затем впаять постоянный резистор на место переменного, округлив номинал в большую сторону.

Я пошел по более опасному пути - резко изменил частоту впаяв конденсатор меньшей ёмкости.

У меня было:

R 1 =12kOm
C 1 =1,5nF

По формуле получаем

f =61,1 кГц

После замены конденсатора

R 2 =12kOm
C 2 =1,0nF

f =91,6 кГц

Согласно формуле:

частота увеличилась на 50% соответственно и мощность возросла.

Если R не будем менять, то формула упрощается:

Или если С не будем менять, то формула:

Проследите конденсатор и резистор подключенные к 5 и 6 ножкам микросхемы. и замените конденсатор на конденсатор с меньшей ёмкостью.


Результат

После разгона блока питания напряжение стало ровно 5.00 (мультиметр может иногда показать 5.01, что скорее всего погрешность), почти не реагируя на выполняемые задачи - при сильной нагрузке на шине +12 вольт (одновременная работа двух CD и двух винтов) - напряжение на шине +5В может кратковременно снизиться 4.98.

Начали сильнее греться ключевые транзисторы. Т.е. если раньше радиатор был слегка теплый, то теперь он сильно теплый, но не горячий. Радиатор с выпрямительными полумостами сильнее греться не стал. Трансформатор также не греется. С 18.09.2004 г. и по сегодняшний день (15.01.05) к блоку питания нет никаких вопросов. На данный момент следующая конфигурация:

Ссылки

  1. ПАРАМЕТРЫ НАИБОЛЕЕ РАСПРОСТРАНЕННЫХ СИЛОВЫХ ТРАНЗИСТОРОВ, ПРИМЕНЯЕМЫХ В ДВУХТАКТНЫХ СХЕМАХ ИБП ЗАРУБЕЖНОГО ПРОИЗВОДСТВА.
  2. Конденсаторы. (Примечание: С = 0.77 ۰ Сном ۰SQRT(0,001۰f), где Сном - номинальная емкость конденсатора.)

Комментарии Renni: То что ты повысил частоту у тебя повысилось количество пилообразных импульсов за определенный промежуток времени, а как следствие повысилась частота с которой отслеживается нестабильности по питанию, так как нестабильности по питанию отслеживаются чаще то и импульсы на закрытие и открытие транзисторов в полумостовом ключе происходит с двойной частотой. Твои транзисторы обладают характеристиками, а конкретно своим быстродействием.: Увеличив частоту ты тем самым уменьшил размер мертвой зоны. Раз ты говоришь что транзисторы не греются значит они входят в той диапазон частот, значит тут казалось бы все хорошо. Но, есть и подводные камни. Перед тобой есть схема электрическая принципиальная? Я тебе сейчас по схеме объясню. Там в схеме посмотри где ключевые транзисторы, к коллектору и эмиттеру включены диоды. Они служат для рассасывания остаточного заряда в транзисторах и перегонке заряда в другое плечо(в конденсатор). Вот, если у этих товарищей скорость переключения низкая у тебя возможны сквозные токи - это прямой пробой твоих транзисторов. Возможно из за этого они будут греться. Теперь дальше, там дело не этом, там дело в том что после прямого тока, который прошел через диод. Он обладает инерционностью и когда появляется обратный ток,: у него какое то время еще не восстанавливается значение его сопротивления и по этому они характеризуются не частотой работы, а временем восстановления параметров. Если это время больше чем можно, то у тебя будут наблюдаться частичные сквозные токи из за этого возможны всплески как по напряжению так и по току. Во вторично это не так страшно, но в силовой части - это просто пи#дец,: мягко говоря. Так вот продолжим. Во вторичной цепи эти переключения следующим не желательны, а именно: Там для стабилизации используются диоды Шотки, так вот по 12 вольтам что бы их подпирают напряжением -5 вольт.(прим. у меня кремниевые на 12 вольтах), так вот по 12 вольтам что бы их (диоды Шотки) можно было использовать подпирают напряжением -5 вольт. (Из-за низкого обратного напряжения, невозможно просто поставить диодов Шотки на шине 12 вольт, поэтому так извращаются). Но у кремниевых потери больше чем у диодов Шотки и реакция поменьше, если только они не из числа быстро восстанавливающихся. Так вот, если высокая частота, то у диодов Шотки наблюдается практически тот же эффект что и в силовой части + инерционность обмотки по -5 вольтам по отношению к +12 вольтам, делает невозможным использование диодов ШОТКИ, по этому увеличение частоты может со временем привести к выходу из строя онных. Я рассматриваю общий случай. Так вот едем дальше. Дальше еще один прикол, связанный наконец непосредственно с цепью обратной связи. Когда ты образуешь отрицательную обратную связь, у тебя есть такое понятие как резонансная частота вот этой петли обратной связи. Если ты выйдешь на резонанс, то п#зда всей твоей схеме. Прости за грубое выражение. Потому что эта микросхема ШИМ всем управляет и требуется ее работа в режиме. И на конец "темная лошадка" ;) Ты понял о чем я? Трансформатор он самый, так вот у этой сцуки ведь тоже есть резонансная частота. Так эта дрянь ведь не унифицированная деталь, трансформатор намоточное изделие в каждом случае изготовляется индивидуально - по этой просто причине ты не знаешь характеристик на него. A если ты введешь своей частотой в резонанс? Ты спалишь свой транс и БП можешь спокойно выкидывать. Внешне два абсолютно одинаковых трансформатора могут иметь абсолютно разные параметры. Ну факт тот что не правильной подборкой частоты ты мог спокойно спалить БП.При всех прочих условиях как все таки повысить мощность БП. Повышаем мощность блока питания. Первым делом нам надо разобраться что такое мощность. Формула предельно проста - ток на напряжение. Напряжение в силовой части у нас составляет 310 вольт постоянки. Так вот так как на напряжение мы никак не можем влиять. Транс то у нас один. Мы можем увеличить только ток. Величину тока нам диктует две вещи- это транзисторы в полумосте и буферные емкости. Кондеры по больше, транзисторы по мощнее, так вот надо увеличить номинал емкости и поменять транзисторы на такие у которых больше ток цепи коллектор-эмиттер или просто ток коллектора, если не жалко можешь втулть туда на 1000 мкФ и не напрягаться с расчетами. Так вот в этой цепи мы сделали все что могли, тут больше в принципе сделать ничего не возможно, разве что еще учесть напряжение и ток базы этих новых транзисторов. Если трансформатор маленький - это не поможет. Надо еще отрегулировать такую хрень как напряжение и ток при котором у тебя будет открываться и закрываться транзисторы. Теперь вроде как тут все. Поехали во вторичную цепь.Теперь у нас на выходе обмоток тока доху....... Надо немного подправить наши цепи фильтрации, стабилизации и выпрямления. Для этотго мы берем в зависимости от реализации нашего БП и меняем диодные сборки в первую очередь, что бы обеспечивали возможность протекания нашего тока. В принципе все остальное можно оставить так как есть. Вот и все, вроде бы, ну на данный момент Запас прочности должен быть. Тут дело в том что техника импульсная - вот это ее дурная сторона. Тут почти все построено на АЧХ и ФЧХ, на t реакции.: вот и все

Инструкция

Согласно закону Ома для электрических цепей постоянного тока:U=IR, где:U - величина подаваемого на электрическую цепь ,
R - полное сопротивление электрической цепи,
I - величина протекающего по электрической цепи тока,для определения силы тока нужно разделить напряжение, подводимое к цепи на ее полное сопротивление. I=U/RСоответственно, для того чтобы увеличить силу тока, можно увеличить подаваемое на вход электрической цепи напряжение или уменьшить ее сопротивление.Сила тока увеличится, если увеличить напряжение. Увеличение тока при этом будет повышению напряжения. Например, если цепь сопротивлением 10 Ом была подключена к стандартному элементу питания напряжением 1,5 Вольта, то протекающий по ней ток составлял:
1,5/10=0,15 А (Ампер). При подключении к этой цепи еще одного элемента питания напряжением 1,5 В общее напряжение станет 3 В, а протекающий по электрической цепи ток повысится до 0,3 А.
Подключение осуществляется «последовательно, то есть плюс одного элемента питания присоединяется к минусу другого. Таким образом, соединив последовательно достаточное количество источников питания, можно получить необходимое напряжение и обеспечить протекание тока нужной силы. Объединенные в одну цепь несколько источников напряжения батареей элементов. В быту такие конструкции обычно называют «батарейками (даже если питания всего из одного элемента).Однако на практике повышение силы тока может несколько отличаться от расчетного (пропорционального увеличению напряжения). В основном это связано с дополнительным нагревом проводников цепи, происходящим при увеличении проходящего по ним тока. При этом, как правило, происходит увеличение сопротивления цепи, что приводит к снижению силы тока.Кроме того, увеличение нагрузки на электрическую цепь может привести к ее «перегоранию или даже возгоранию. Особенно внимательным нужно быть при эксплуатации электробытовых приборов, которые могут работать лишь при фиксированном напряжении.

Если уменьшить полное сопротивление электрической цепи, то сила тока также увеличится. Согласно закону Ома увеличение силы тока будет пропорционально уменьшению сопротивления. Например, если напряжение источника питания составляло 1,5 В, а сопротивление цепи было 10 Ом, то по такой цепи проходил электрический ток величиной 0,15 А. Если затем сопротивление цепи уменьшить в два раза (сделать равным 5 Ом), то протекающий по цепи ток увеличится в два раза и составит 0,3 Ампера.Крайним случаем уменьшения сопротивления нагрузки является короткое замыкание, при котором сопротивление нагрузки практически равно нулю. Бесконечного тока при этом, конечно, не возникает, так как в цепи имеется внутреннее сопротивление источника питания. Более значительного уменьшения сопротивления можно добиться, если сильно охладить проводник. На этом эффекте сверхпроводимости основано получение токов огромной силы.

Для повышения силы переменного тока используются всевозможные электронные приборы, в основном - трансформаторы тока, применяемые, например, в сварочных аппаратах. Сила переменного тока повышается также при понижении частоты (так как вследствие поверхностного эффекта понижается активное сопротивление цепи).Если в цепи переменного тока присутствуют активные сопротивления, то сила тока увеличится при увеличении емкости конденсаторов и уменьшении индуктивности катушек (соленоидов). Если в цепи имеются только емкости (конденсаторы), то сила тока увеличится при увеличении частоты. Если же цепь состоит из катушек индуктивности, то сила тока увеличится при уменьшении частоты тока.

Сопротивление проводников. Удельное сопротивление

Закон Ома является самым главным в электротехнике. Именно поэтому электрики говорят: «- Кто не знает Закон Ома, пусть сидит дома». Согласно этому закону ток прямо пропорционален напряжению и обратно пропорционален сопротивлению (I = U / R), где R является коэффициентом, которое связывает напряжение и силу тока. Единица измерения напряжения - Вольт, сопротивления - Ом, силы тока - Ампер.
Для того, чтобы показать, как работает Закон Ома, разберем простую электрическую цепь. Цепью является резистор, он же - нагрузка. Для регистрации на нем напряжения используется вольтметр. Для тока нагрузки - амперметр. При замыкании ключа ток идет через нагрузку. Смотрим, насколько соблюдается Закон Ома. Ток в цепи равен: напряжение цепи 2 Вольта и сопротивление цепи 2 Ома (I = 2 В / 2 Ом =1 А). Амперметр столько и показывает. Резистор является нагрузкой, сопротивлением 2 Ома. Когда замыкаем ключ S1, ток течет через нагрузку. С помощью амперметра измеряем ток цепи. С помощью вольтметра - напряжение на зажимах нагрузки. Ток в цепи равен: 2 Вольта / 2 Ом = 1 А. Как видно это соблюдается.

Теперь разберемся, что нужно сделать, чтобы поднять силу тока в цепи. Для начала увеличиваем напряжение. Сделаем батарею не 2 В, а 12 В. Вольтметр будет показывать 12 В. Что будет показывать амперметр? 12 В/ 2 Ом = 6 А. То есть, повысив напряжение на нагрузке в 6 раз, получили повышение силы тока в 6 раз.

Рассмотрим еще один способ, как поднять ток в цепи. Можно уменьшить сопротивление - вместо нагрузки 2 Ом, возьмем 1 Ом. Что получаем: 2 Вольта / 1 Ом = 2 А. То есть, уменьшив сопротивление нагрузки в 2 раза, увеличили ток в 2 раза.
Для того, чтобы легко запомнить формулу Закона Ома придумали треугольник Ома:
Как можно по этому треугольнику определять ток? I = U / R. Все выглядит достаточно наглядно. С помощью треугольника также можно написать производные от Закона Ома формулы: R = U / I; U = I * R. Главное запомнить, что напряжение находится в вершине треугольника.

В 18 веке, когда был открыт закон, атомная физика находилась в зачаточном состоянии. Поэтому Георг Ом считал, что проводник представляет собой что-то, похожее на трубу, в которой течет жидкость. Только жидкость в виде электротока.
При этом он обнаружил закономерность, что сопротивление проводника становится значительнее при увеличении его длины и меньше при увеличении диаметра. Исходя из этого, Георг Ом вывел формулу: R = p *l / S, где p - это некоторый коэффициент, умноженный на длину проводника и деленный на площадь сечения. Этот коэффициент был назван удельным сопротивлением, характеризующим способность создавать препятствие протеканию эл.тока, и зависит из какого материала изготовлен проводник. Причем, чем больше удельное сопротивление, тем больше сопротивление проводника. Чтобы увеличить сопротивление необходимо увеличить длину проводника, либо уменьшить его диаметр, либо выбрать материал с большим значением данного параметра. В частности, для меди удельное сопротивление составляет 0,017 (Ом * мм2 / м).

Проводники

Рассмотрим, какие бывают проводники. На сегодняшний день самым распространенным является проводник из меди. Из-за низкого удельного сопротивления и большой устойчивости к окислению, при этом довольно низкой ломкости, этот проводник все больше и больше находит применение в электрике. Постепенно медный проводник вытесняет алюминиевый. Медь применяют при производстве провода (жил в кабелях) и при изготовлении электротехнических изделий.

Вторым по применению можно назвать алюминий. Он часто используется в старой проводке, на смену которой приходит медь. Также применяется при производстве проводов и изготовлении электротехнических изделий.
Следующий материал - это железо. Оно обладает удельным сопротивлением гораздо больше, чем медь и алюминий (в 6 раз больше, чем у меди и в 4 раза выше, чем у алюминия). Поэтому, при производстве проводов, как правило, не применяется. Зато применяется при изготовлении щитов, шин, которые благодаря большому сечению обладают низким сопротивлением. Также как крепежное изделие.

Золото в электрике не применяется, так как оно достаточно дорогое. Благодаря низкому значению удельного сопротивления и большой защиты от окисления применяется в космических технологиях.

Латунь в электрике не применяется.

Олово и свинец обычно применяются в сплаве в качестве припоя. Как проводники, для изготовления каких-либо приборов, не применяются.

Серебро чаще всего применяется в военной технике высокочастотных приборов. В электрике применяется редко.

Вольфрам применяется в лампах накаливания. Благодаря тому, что он не разрушается при высоких температурах, его используют в качестве нитей накаливания для ламп.


применяется в нагревательных приборах, так как обладает высоким удельным сопротивлением при большом сечении. Понадобится малое количество его длины, чтобы сделать нагревательный элемент.

Уголь, графит применяются в электрических щетках в электродвигателях.
Проводники применяются с целью пропускать через себя силу тока. При этом ток совершает полезную работу.

Диэлектрики

Диэлектрики имеют большое значение удельного сопротивления, которое в сравнении с проводниками намного выше.

Фарфор применяют, как правило, при изготовлении изоляторов. Для производства изоляторов также используют стекло.

Эбонит чаще всего применяется в трансформаторах. Из него изготовляют каркас катушек, на которые наматывается провод.

Также в качестве диэлектриков часто используют разные виды пластмасс. К диэлектрикам относится материал, из которого произведена изоляционная лента.

Материал, из которого изготовлена изоляция в проводах, также является диэлектриком.

Основное назначение диэлектрика - это защита людей от поражения электротоком, изолировать между собой токопроводящие жилы.