В чем заключается имитационное моделирование. Основные методы имитационного моделирования

В статье поговорим об имитационных моделях. Это довольно сложная тема, которая требует отдельного рассмотрения. Именно поэтому мы попробуем доступным языком объяснить этот вопрос.

Имитационные модели

О чем же идет речь? Начнем с того, что имитационные модели необходимы для воспроизведения каких-либо характеристик сложной системы, в которой происходит взаимодействие элементов. При этом такое моделирование имеет ряд особенностей.

Во-первых, это объект моделирования, который чаще всего представляет собой сложную комплексную систему. Во-вторых, это факторы случайности, которые присутствуют всегда и оказывают определенное влияние на систему. В-третьих, это необходимость описания сложного и длительного процесса, который наблюдается в результате моделирования. Четвертый фактор заключается в том, что без использования компьютерных технологий получить желаемые результаты невозможно.

Разработка имитационной модели

Она заключается в том, что каждый объект имеет определенный набор своих характеристик. Все они хранятся в компьютере при помощи специальных таблиц. Взаимодействие значений и показателей всегда описывается при помощи алгоритма.

Особенность и прелесть моделирования в том, что каждый его этап постепенный и плавный, что дает возможность пошагово менять характеристики и параметры и получать разные результаты. Программа, в которой задействованы имитационные модели, выводит информацию о полученных результатах, опираясь на те или иные изменения. Часто используется графическое или анимированное их представление, сильно упрощающее восприятие и понимание многих сложных процессов, которые осознать в алгоритмичном виде довольно сложно.

Детерминированность

Имитационные математические модели строятся на том, что они копируют качества и характеристики неких реальных систем. Рассмотрим пример, когда необходимо исследовать количество и динамику численности определённых организмов. Для этого при помощи моделирования можно отдельно рассматривать каждый организм, чтобы анализировать конкретно его показатели. При этом условия чаще всего задаются вербально. К примеру, по истечении какого-то отрезка времени можно задать размножение организма, а по прошествии более длительного срока - его гибель. Выполнение всех этих условий возможно в имитационной модели.

Очень часто приводят примеры моделирования движения молекул газа, ведь известно, что они двигаются хаотично. Можно изучать взаимодействие молекул со стенками сосуда или друг с другом и описывать результаты в виде алгоритма. Это позволит получать усредненные характеристики всей системы и выполнять анализ. При этом надо понимать, что подобный компьютерный эксперимент, по сути, можно назвать реальным, так как все характеристики моделируются очень точно. Но в чём смысл этого процесса?

Дело в том, что имитационная модель позволяет выделить конкретные и чистые характеристики и показатели. Она как бы избавляется от случайных, лишних и ещё ряда других факторов, о которых исследователи могут даже не догадываться. Заметим, что очень часто детерминирование и математическое моделирование схожи, если в качестве результата не должна быть создана автономная стратегия действий. Примеры, которые мы выше рассмотрели, касаются детерминированных систем. Они отличаются тем, что у них нет элементов вероятности.

Случайные процессы

Наименование очень просто понять, если провести параллель из обычной жизни. Например, когда вы стоите в очереди в магазине, который закрывается через 5 минут, и гадаете, успеете ли вы приобрести товар. Также проявление случайности можно заметить, когда вы звоните кому-то и считаете гудки, думая, с какой вероятностью дозвонитесь. Возможно, кому-то это покажется удивительным, но именно благодаря таким простым примерам в начале прошлого века зародилась новейшая отрасль математики, а именно теория массового обслуживания. Она использует статистику и теорию вероятности для того, чтобы сделать некоторые выводы. Позже исследователи доказали, что эта теория очень тесно связана с военным делом, экономикой, производством, экологией, биологией и т. д.

Метод Монте-Карло

Важный метод решения задачи на самообслуживание - это метод статистических испытаний или метод Монте-Карло. Заметим, что возможности исследования случайных процессов аналитическим путем довольно сложны, а метод Монте-Карло очень прост и универсален, в чем его главная особенность. Мы можем рассмотреть пример магазина, в который заходит один покупатель или несколько, приход больных в травмпункт по одному или целой толпой и т. д. При этом мы понимаем, что всё это случайные процессы, и промежутки времени между какими-то действиями - это независимые события, которые распределяются по законам, которые можно вывести, только проведя огромное количество наблюдений. Иногда это невозможно, поэтому берется усредненный вариант. Но какова цель моделирования случайных процессов?

Дело в том, что это позволяет получить ответы на множество вопросов. Банально необходимо рассчитать, сколько человеку придется стоять в очереди при учете всех обстоятельств. Казалось бы, это довольно простой пример, но это лишь первый уровень, а подобных ситуаций может быть очень много. Иногда рассчитать время очень важно.

Также можно задать вопрос о том, как можно распределить время, ожидая обслуживание. Еще более сложный вопрос касается того, как должны соотнестись параметры, чтобы до только что вошедшего покупателя очередь не дошла никогда. Кажется, что это довольно лёгкий вопрос, но если задуматься о нем и начать хотя бы немножко усложнять, становится понятно, что ответить не так легко.

Процесс

Как же происходит случайное моделирование? Используются математические формулы, а именно законы распределения случайных величин. Также используются числовые константы. Заметьте, что в данном случае не надо прибегать ни к каким уравнениям, которые используют при аналитических методах. В данном случае просто происходит имитация той же очереди, о которой мы говорили выше. Только сначала используются программы, которые могут генерировать случайные числа и соотносить их с заданным законом распределения. После этого проводится объемная, статистическая обработка полученных величин, которая анализирует данные на предмет, отвечают ли они изначальной цели моделирования. Продолжая дальше, скажем, что можно найти оптимальное количество людей, которые будут работать в магазине для того, чтобы очередь не возникала никогда. При этом используемый математический аппарат в данном случае - это методы математической статистики.

Образование

Анализу имитационных моделей в школах уделяется мало внимания. К сожалению, это может отразиться на будущем довольно серьезно. Дети должны со школы знать некоторые базовые принципы моделирования, так как развитие современного мира без этого процесса невозможно. В базовом курсе информатики дети могут с легкостью использовать имитационную модель "Жизнь".

Более основательное изучение может преподаваться в старших классах или в профильных школах. Прежде всего надо заняться изучением имитационного моделирования случайных процессов. Помните, что в российских школах такое понятие и методы только начинают вводиться, поэтому очень важно держать уровень образования учителей, которые со стопроцентной гарантией столкнутся с рядом вопросов от детей. При этом не будем усложнять задачу, акцентируя внимание на том, что речь идет об элементарном введении в эту тему, которое можно подробно рассмотреть за 2 часа.

После того как дети усвоили теоретическую базу, стоит осветить технические вопросы, которые касаются генерации последовательности случайных чисел на компьютере. При этом не надо загружать детей информацией о том, как работает вычислительная машина и на каких принципах строится аналитика. Из практических навыков их нужно учить создавать генераторы равномерных случайных чисел на отрезке или случайных чисел по закону распределения.

Актуальность

Поговорим немного о том, зачем нужны имитационные модели управления. Дело в том, что в современном мире обойтись без моделирования практически невозможно в любой сфере. Почему же оно так востребовано и популярно? Моделирование может заменить реальные события, необходимые для получения конкретных результатов, создание и анализ которых стоят слишком дорого. Или же может быть случай, когда проводить реальные эксперименты запрещено. Также люди пользуются им, когда просто невозможно построить аналитическую модель из-за ряда случайных факторов, последствий и причинных связей. Последний случай, когда используется этот метод, - это тогда, когда необходимо имитировать поведение какой-либо системы на протяжении данного отрезка времени. Для всего этого создаются симуляторы, которые пытаются максимально воспроизвести качества первоначальной системы.

Виды

Имитационные модели исследования могут быть нескольких видов. Так, рассмотрим подходы имитационного моделирования. Первое - это системная динамика, которая выражается в том, что есть связанные между собой переменные, определенные накопители и обратная связь. Таким образом чаще всего рассматриваются две системы, в которых есть некоторые общие характеристики и точки пересечения. Следующий вид моделирования - дискретно-событийное. Оно касается тех случаев, когда есть определенные процессы и ресурсы, а также последовательность действий. Чаще всего таким способом исследуют возможность того или иного события через призму ряда возможных или случайных факторов. Третий вид моделирования - агентный. Он заключается в том, что изучаются индивидуальные свойства организма в их системе. При этом необходимо косвенное или прямое взаимодействие наблюдаемого объекта и других.

Дискретно-событийное моделирование предлагает абстрагироваться от непрерывности событий и рассматривать только основные моменты. Таким образом случайные и лишние факторы исключаются. Этот метод максимально развит, и он используется во множестве сфер: от логистики до производственных систем. Именно он лучше всего подходит для моделирования производственных процессов. Кстати, его создал в 1960-х годах Джеффри Гордон. Системная динамика - это парадигма моделирования, где для исследования необходимо графическое изображение связей и взаимных влияний одних параметров на другие. При этом учитывается фактор времени. Только на основе всех данных создается глобальная модель на компьютере. Именно этот вид позволяет очень глубоко понять суть исследуемого события и выявить какие-то причины и связи. Благодаря этому моделированию строят бизнес-стратегии, модели производства, развитие болезней, планирование города и так далее. Этот метод был изобретён в 1950-х годах Форрестером.

Агентное моделирование появилось в 1990-х годах, оно является сравнительно новым. Это направление используется для анализа децентрализованных систем, динамика которых при этом определяется не общепринятыми законами и правилами, а индивидуальной активностью определенных элементов. Суть этого моделирования заключается в том, чтобы получить представление о новых правилах, в целом охарактеризовать систему и найти связь между индивидуальными составляющими. При этом изучается элемент, который активен и автономен, может принимать решения самостоятельно и взаимодействовать со своим окружением, а также самостоятельно меняться, что очень важно.

Этапы

Сейчас рассмотрим основные этапы разработки имитационной модели. Они включают её формулировку в самом начале процесса, построение концептуальной модели, выбор способа моделирования, выбор аппарата моделирования, планирование, выполнение задачи. На последнем этапе происходит анализ и обработка всех полученных данных. Построение имитационной модели - это сложный и длительный процесс, который требует большого внимания и понимания сути дела. Заметьте, что сами этапы занимают максимум времени, а процесс моделирования на компьютере - не больше нескольких минут. Очень важно использовать правильные модели имитационного моделирования, так как без этого не получится добиться нужных результатов. Какие-то данные получены будут, но они будут не реалистичны и не продуктивны.

Подводя итоги статьи, хочется сказать, что это очень важная и современная отрасль. Мы рассмотрели примеры имитационных моделей, чтобы понять важность всех этих моментов. В современном мире моделирование играет огромную роль, так как на его основании развиваются экономика, градостроение, производство и так далее. Важно понимать, что модели имитационных систем очень востребованы, так как они невероятно выгодны и удобны. Даже при создании реальных условий не всегда можно получить достоверные результаты, так как всегда влияет множество схоластических факторов, которые учесть просто невозможно.

Основными методами имитационного моделирования являются: аналитический метод, метод статического моделирования и комбинированный метод (аналитико-статистический) метод.

Аналитический метод применяется для имитации процессов в основном для малых и простых систем, где отсутствует фактор случайности. Например, когда процесс их функционирования описан дифференциальными или интегро-дифференциальными уравнениями. Метод назван условно, так как он объединяет возможности имитации процесса, модель которого получена в виде аналитически замкнутого решения, или решения полученного методами вычислительной математики.

Метод статистического моделирования первоначально развивался как метод статистических испытаний (Монте-Карло). Это – численный метод, состоящий в получении оценок вероятностных характеристик, совпадающих с решением аналитических задач (например, с решением уравнений и вычислением определенного интеграла). В последствии этот метод стал применяться для имитации процессов, происходящих в системах, внутри которых есть источник случайности или которые подвержены случайным воздействиям. Он получил название метода статистического моделирования .

При исследовании сложных систем, подверженных случайным возмущениям используются вероятностные аналитические модели и вероятностные имитационные модели.

В вероятностных аналитических моделях влияние случайных факторов учитывается с помощью задания вероятностных характеристик случайных процессов (законы распределения вероятностей, спектральные плотности или корреляционные функции). При этом построение вероятностных аналитических моделей представляет собой сложную вычислительную задачу. Поэтому вероятностное аналитическое моделирование используют для изучения сравнительно простых систем.

Подмечено, что введение случайных возмущений в имитационные модели не вносит принципиальных усложнений, поэтому исследование сложных случайных процессов проводится в настоящее время, как правило, на имитационных моделях.

В вероятностном имитационном моделировании оперируют не с характеристиками случайных процессов, а с конкретными случайными числовыми значениями параметров процессов и систем. При этом результаты, полученные при воспроизведении на имитационной модели рассматриваемого процесса, являются случайными реализациями. Поэтому для нахождения объективных и устойчивых характеристик процесса требуется его многократное воспроизведение, с последующей статистической обработкой полученных данных. Именно поэтому исследование сложных процессов и систем, подверженных случайным возмущениям, с помощью имитационного моделирования принято называть статистическим моделированием.



Статистическая модель случайного процесса - это алгоритм, с помощью которого имитируют работу сложной системы, подверженной случайным возмущениям; имитируют взаимодействие элементов системы, носящих вероятностный характер.

При реализации на ЭВМ статистического имитационного моделирования возникает задача получения на ЭВМ случайных числовых последовательностей с заданными вероятностными характеристиками. Численный метод, решающий задачу генерирования последовательности случайных чисел с заданными законами распределения, получил название "метод статистических испытаний" или "метод Монте-Карло".

Так как метод Монте-Карло кроме статистического моделирования имеет приложение к ряду численных методов (взятие интегралов, решение уравнений), то целесообразно иметь различные термины.

Итак, статистическое моделирование - это способ изучения сложных процессов и систем, подверженных случайным возмущениям, с помощью имитационных моделей.

Метод Монте-Карло - это численный метод, моделирующий на ЭВМ псевдослучайные числовые последовательности с заданными вероятностными характеристиками

Методика статистического моделирования состоит из следующих этапов:

1. Моделирование на ЭВМ псевдослучайных последовательностей с заданной корреляцией и законом распределения вероятностей (метод Монте-Карло), имитирующих на ЭВМ случайные значения параметров при каждом испытании;

2. Преобразование полученных числовых последовательностей на имитационных математических моделях.

3. Статистическая обработка результатов моделирования.

Комбинированный метод (аналитико-статистический) позволяет объединить достоинства аналитического и статистического методов моделирования. Он применяется в случае разработки модели, состоящей из различных модулей, представляющих набор как статистических, так и аналитических моделей, которые взаимодействуют как единое целое. Причем, в набор модулей могут входить не только модули, соответствующие динамическим моделям, но и модули, соответствующие статическим математическим моделям.

Проект имитационного моделирования включает следующие этапы: концептуальный, этап интерпретации, экспериментальный этап. Рассмотрим их более подробно.

1. Концептуальный. На этом этапе происходит первичное ознакомление с объектом исследования и выясняется, какие данные необходимы для выполнения проекта. Формируются общие сведения о модели: наименование модели, её назначение и цель разработки. Определяется перечень объектов, на которых планируется использование модели, указываются должностные лица, в чьих интересах будет решаться задача. Описывается физическая сущность моделируемого процесса и область применения модели.

На этом же этапе определяются критерии, по которым будет оцениваться эффективность модели или её качество. Описываются ограничения и допущения, принятые при разработке модели. Перечисляются аналитические методы, которые планируется использовать при разработке модели. Определяется порядок запуска и управления моделью, возможные режимы её использования и связь с другими моделями. Выясняются источники информации, используемой в модели, а также состав и структура этой информации. Если при построении модели планируется использовать случайные величины, то именно на концептуальном этапе обосновываются законы их распределения.

Важно также на этом этапе определить требования к конфигурации технических и программных средств: продумать характеристики технических средств (тип центрального процессора, наличие сопроцессора, объемы оперативной и постоянной памяти и т.д.) и подготовить общее программное обеспечение (операционные системы, сетевые операционные системы и т.п.), общесистемное программное обеспечение (СУБД, офисные пакеты и т.п.).

Следует обеспечить защиту информации, используемой в модели, с этой целью на концептуальном этапе определяется политика безопасности (потенциальные угрозы, возможный ущерб в случае нарушения защиты, группы пользователей, права доступа и т.д.).

2. Этап интерпретации. Он включает в себя формализацию описания моделируемого объекта на основе выбранного CASE - средства. На этом этапе, на естественном языке дается семантическое (смысловое) описание состава исследуемого объекта, взаимодействия между элементами объекта и объекта с внешней средой. На основе описания объекта создается имитационная модель, средствами выбранного для этой цели языка моделирования. На рисунке 6.4. приведен пример модели, созданной средствами ARIS.

Рис. 6.4. Пример модели, выполненной в средеARIS

Здесь же определяются временные и стоимостные характеристики

функций и бизнес-процессов. Пример приведен на рисунке 6.5.

Рис. 6.5. Описание количественных и качественных характеристик

На этом этапе осуществляется и проверка полученной модели на соответствие ее той теоретической схеме, которая была положена в основу формального описания объекта моделирования. Этот процесс часто называют верификацией модели. Заканчивается второй этап проверкой соответствия имитационной модели свойствам реальной системы. Если этого нет, то следует снова вернуться к моменту формализации модели.

3. Экспериментальный этап. Этот этап заключается в проведении численного эксперимента на разработанной модели путем «прогона» ее на ЭВМ. Перед началом исследования полезно составить такую последовательность «прогонов» модели, которая позволила бы получить необходимый объем информации при заданном составе и достоверности исходных данных. Далее на основе разработанного плана эксперимента осуществляют «прогоны» имитационной модели на ЭВМ и проводят обработку результатов с целью представления их в виде, удобном для анализа.

На основе анализа результатов подготавливаются и формулируются окончательные выводы по проведенному моделированию и разрабатываются рекомендации по использованию результатов моделирования для достижения поставленных целей. Часто на основе этих выводов возвращаются к началу процесса моделирования для необходимых изменений в теоретической и практической части модели и повторным исследованиям с измененной моделью. В результате нескольких подобных циклов получают имитационную модель, наилучшим образом удовлетворяющую поставленным задачам.

Существует довольно много программных систем, позволяющих создавать имитационные модели. К ним относятся:

Ø Business Studio (Имитационное моделирование бизнес-процессов)

Ø PTV Vision VISSIM

Ø Tecnomatix Plant Simulation

Некоторые из этих систем рассматриваются более подробно в главе 7

Вопросы к главе 6

1. Что такое имитационное моделирование?

2. Дайте определение имитационной модели.

3. Что является основой всякой имитационной модели?

4. Что является целью имитационного моделирования?

5. Перечислите основные достоинства имитационного моделирования

6. Назовите недостатки имитационного моделирования:

7. Приведите типичные примеры, где может быть применить ИМ

8. Какие существует виды имитационного моделирования?

9. Что такое системная динамика?

10. Каковы компоненты дискретно-событийного моделирования

11. Какова цель агентных моделей?

12. Перечислите этапы имитационного моделирования

Модель представляет собой абстрактное описание системы, уровень детализации которого определяет сам исследователь. Человек принимает решение о том, является ли данный элемент системы существенным, а, следовательно, будет ли он включен в описание системы. Это решение принимается с учетом цели, лежащей в основе разработки модели. От того, насколько хорошо исследователь умеет выделять существенные элементы и взаимосвязи между ними, зависит успех моделирования.

Система рассматривается как состоящая из множества взаимосвязанных элементов, объединенных для выполнения определенной функции. Определение системы во многом субъективно, т.е. оно зависит не только от цели обработки модели, но и от того, кто именно определяет систему.

Итак, процесс моделирования начинается с определения цели разработки модели, на основе которой затем устанавливаются границы системы и необходимый уровень детализации моделируемых процессов. Выбранный уровень детализации должен позволять абстрагироваться от неточно определенных из-за недостатка информации аспектов функционирования реальной системы. В описание системы, кроме того, должны быть включены критерии эффективности функционирования системы и оцениваемые альтернативные решения, которые могут рассматриваться как часть модели или как ее входы. Оценки же альтернативных решений по заданным критериям эффективности рассматриваются как выходы модели. Обычно оценка альтернатив требует внесения изменений в описание системы и, следовательно, перестройки модели. Поэтому на практике процесс построения модели является итеративным. После того как на основе полученных оценок альтернатив могут быть выработаны рекомендации, можно приступать к внедрению результатов моделирования. При этом в рекомендациях должны быть четко сформулированы как основные решения, так и условия их реализации.

Имитационное моделирование (в широком смысле) - есть процесс конструирования модели реальной системы и постановки экспериментов на этой модели с целью либо понять поведение системы, либо оценить (в рамках накладываемых ограничений) различные стратегии, обеспечивающие функционирование данной системы.

Имитационное моделирование (в узком смысле) - это представление динамического поведения системы посредством продвижения ее от одного состояния к другому в соответствии с хорошо известными операционными правилами (алгоритмами).

Итак, для создания имитационной модели надо выделить и описать состояния системы и алгоритмы (правила) его изменения. Далее это записывается в терминах некоторого инструментального средства моделирования (алгоритмического языка, специализированного языка) и обрабатывается на ЭВМ.

Имитационная модель (ИМ)- это логико-математическое описание системы, которое может быть использовано в ходе проведения экспериментов на цифровой ЭВМ.

ИМ могут использоваться для проектирования, анализа и оценки функционирования систем. С ИМ проводятся машинные эксперименты, которые позволяют сделать выводы о поведении системы:

· в отсутствии ее построения, если это проектируемая система;

· без вмешательства в ее функционирование, если это действующая система, экспериментирование с которой невозможно или нежелательно (высокие затраты, опасность);

· без разрушения системы, если цель эксперимента состоит в определении воздействия на нее.

Процесс формирования имитационной модели коротко можно представить следующим образом (Рис.2 ):

Рис.2 . Схема формирования имитационной модели

Вывод: для ИМ характерно воспроизведение явлений, описываемых формализированной схемой процесса, с сохранением их логической структуры, последовательности чередования во времени, а иногда и физического содержания.

Имитационное моделирование (ИМ) на ЭВМ находит широкое применение при исследовании и управлении сложными дискретными системами (СДС) и процессами, в них протекающими. К таким системам можно отнести экономические и производственные объекты, морские порты, аэропорты, комплексы перекачки нефти и газа, ирригационные системы, программное обеспечение сложных систем управления, вычислительные сети и многие другие. Широкое использование ИМ объясняется тем, что размерность решаемых задач и неформализуемость сложных систем не позволяют использовать строгие методы оптимизации.

Под имитацией будем понимать численный метод проведения на ЭВМ экспериментов с математическими моделями, описывающими поведение сложных систем в течение продолжительного времени.

Имитационный эксперимент представляет собой отображение процесса, протекающего в СДС в течение длительного отрезка времени (минута, месяц, год и т.д.), что занимает, как правило, несколько секунд или минут времени работы ЭВМ. Однако существуют задачи, для решения которых необходимо проводить так много вычислений при моделировании (как правило, это задачи, связанные с системами управления, моделированием поддержки принятия оптимальных решений, отработки эффективных стратегий управления и т.п.), что ИМ работает медленнее реальной системы. Поэтому возможность за короткое время промоделировать длительный период работы СДС не самое главное, что обеспечивает имитация.

Возможности имитационного моделирования:

1. С ИМ проводятся машинные эксперименты, которые позволяют сделать выводы о поведении системы:

· без ее построения, если это проектируемая система;

· без вмешательства в ее функционирование, если это действующая система, экспериментирование с которой невозможно или нежелательно (дорого, опасно);

· без ее разрушения, если цель эксперимента состоит в определении предельного воздействия на систему.

2. Экспериментально исследовать сложные взаимодействия внутри системы и понять логику ее функционирования.

4. Изучить воздействие внешних и внутренних случайных возмущений.

5. Исследовать степень влияния параметров системы на показатели эффективности.

6. Проверить новые стратегии управления и принятия решений при оперативном управлении.

7. Прогнозировать и планировать функционирование системы в будущем.

8. Проводить обучение персонала.

Основой имитационного эксперимента служит модель имитируемой системы.

ИМ развивалось для моделирования сложных стохастических систем - дискретных, непрерывных, комбинированных.

Моделирование означает, что задаются последовательные моменты времени и состояние модели вычисляется ЭВМ последовательно в каждый из этих моментов времени. Для этого необходимо задать правило (алгоритм) перехода модели из одного состояния в следующее, то есть преобразование:

, ,

где - состояния модели в - ый момент времени, представляющее собой вектор.

Введем в рассмотрение:

- вектор состояния внешней среды (вход модели) в -ый момент времени,

- вектор управления в -ый момент времени.

Тогда ИМ определяется заданием оператора , с помощью которого можно определить состояние модели в следующий момент времени по состоянию в текущий момент, векторам управления и внешней среды:

, .

Это преобразование запишем в рекуррентной форме:

, .

Оператор определяет имитационную модель сложной системы с ее структурой и параметрами.

Важное достоинство ИМ - возможность учета неконтролируемых факторов моделируемого объекта, представляющих собой вектор:

.

Тогда имеем:

, .

Имитационная модель – это логико-математическое описание системы, которое может быть использовано в ходе проведения экспериментов на ЭВМ.

Рис.3. Состав ИМ сложной системы

Возвращаясь к проблеме имитационного моделирования сложной системы, условно выделим в ИМ: модель управляемого объекта, модель системы управления и модель внутренних случайных возмущений (Рис.3 ).

Входы модели управляемого объекта делятся на контролируемые управляемые и неконтролируемые неуправляемые возмущения. Последние генерируются датчиками случайных чисел по заданному закону распределения. Управление, в свою очередь является выходом модели системы управления, а возмущения – выходом датчиков случайных чисел (модели внутренних возмущений).

Здесь - алгоритм системы управления.

Имитация позволяет исследовать поведение моделируемого объекта в течение продолжительного интервала времени – динамическая имитация . В этом случае как говорилось выше трактуется как номер момента времени. Кроме этого можно исследовать поведение системы в определенный момент времени – статическая имитация , тогда трактуется как номер состояния.

При динамической имитации время может меняться с постоянным и переменным шагом (Рис.4 ):

Рис.4. Динамическая имитация

Здесь g i – моменты совершения событий в СДС, g * i – моменты совершения событий при динамической имитации с постоянным шагом, g ‘ i - моменты совершения событий при переменном шаге.

С постоянным шагом проще реализация, но меньше точность и могут быть пустые (то есть лишние) точки времени, когда рассчитывается состояние модели.

С переменным шагом время переходит от события к событию. Этот способ – более точное воспроизведение процесса, нет лишних расчетов, однако его труднее реализовать.

Основные положения , вытекающие из сказанного:

1. ИМ это численный метод и должен применяться тогда, когда другие методы использовать невозможно. Для сложных систем это в данный момент основной метод исследования.

2. Имитация это эксперимент, а значит, при ее проведении должна использоваться теория планирования эксперимента и обработки его результатов.

3. Чем более точно описывается поведение моделируемого объекта, тем точнее требуется модель. Чем точнее модель, тем она сложнее и требует больших ресурсов ЭВМ и времени для исследования. Поэтому надо искать компромисс между точностью модели и ее простотой.

Примеры решаемых задач: анализ проектов систем на различных стадиях, анализ действующих систем, использование в системах управления, использование в системах оптимизации и т.д.


Введение

Одна из важных особенностей АСУ – принципиальная невозможность проведения реальных экспериментов до завершения проекта. Возможным выходом является использование имитационных моделей. Однако их разработка и использование чрезвычайно сложны, возникают затруднения в достаточно точном определении степени адекватности моделируемому процессу. Поэтому важно принять решение – какую создать модель.

Другой важный аспект – использование имитационных моделей в процессе эксплуатации АСУ для принятия решений. Такие модели создаются в процессе проектирования, чтобы их можно было непрерывно модернизировать и корректировать в соответствии с изменяющимися условиями работы пользователя.

Эти же модели могут быть использованы для обучения персонала перед вводом АСУ в эксплуатацию и для проведения деловых игр.

Вид модели производственного процесса зависит в значительной степени от того, является ли он дискретным или непрерывным. В дискретных моделях переменные изменяются дискретно в определенные моменты имитационного времени. Время может приниматься как непрерывным, так и дискретным в зависимости от того, могут ли дискретные изменения переменных происходить в любой момент имитационного времени или только в определенные моменты. В непрерывных моделях переменные процесса являются непрерывными, а время может быть как непрерывным, так и дискретным в зависимости от того, являются непрерывные переменные доступными в любой момент имитационного времени или только в определенные моменты. В обоих случаях в модели предусматривают блок задания времени, который имитирует продвижение модельного времени, обычно ускоренного относительно реального.

Разработка имитационной модели и проведение моделирующих экспериментов в общем случае могут быть представлены в виде нескольких основных этапов, приведенных на рис. 1.


Компонента модели, отображающая определенный элемент моделируемой системы, описывает набором характеристик количественного или логического типа. В зависимости от длительности существования различают компоненты условно-постоянные и временные. Условно-постоянные компоненты существуют в течение всего времени эксперимента с моделью, а временные – генерируются и уничтожаются в ходе эксперимента. Компоненты имитационной модели делят на классы, внутри которых они имеют одинаковый набор характеристик, но отличаются их значениями.

Состояние компоненты определяется значениями ее характеристик в данный момент модельного времени, а совокупность значений характеристик всех компонент определяет состояние модели в целом.

Изменение значений характеристик, являющееся результатом отображения в модели взаимодействия между элементами моделируемой системы, приводит к изменению состояния модели. Характеристика, значение которой в ходе моделирующего эксперимента изменяется, является переменной, в противном случае это параметр. Значения дискретных переменных не изменяются в течение интервала времени между двумя последовательными особыми состояниями и меняются скачком при переходе от одного состояния к другому.

Моделирующий алгоритм представляет собой описание функциональных взаимодействий между компонентами модели. Для его составления процесс функционирования моделируемой системы разбивается на ряд последовательных событий, каждое из которых отражает изменение состояния системы в результате взаимодействия ее элементов или воздействия на системы внешней среды в виде входных сигналов. Особые состояния возникают в определенные моменты времени, которые планируются заранее, либо определяются в ходе эксперимента с моделью. Наступление событий в модели планируется путем составления расписания событий по временам их свершения либо проводится анализ, выявляющий достижение переменными характеристиками установленных значений.

Для этой цели наиболее удобно использовать СИВС. Представленные на них материальные и информационные потоки легко анализировать для выявления особых состояний. Такими состояниями являются отражаемые на СИВС моменты окончания обработки изделия на каждом рабочем месте или его транспортировки; приема и выдачи на постоянное или временное хранение; сборки деталей в узлы, узлов в изделие и т.п. Для дискретного производства изменение характеристик между особыми состояниями можно также считать дискретным, имея в виду переход условным скачком от исходного материала к заготовке, от заготовки к полуфабрикату, от полуфабриката к детали и т.д.

Таким образом, каждая производственная операция рассматривается как оператор, изменяющий значение характеристик изделия. Для простых моделей последовательность состояний можно принимать детерминированной. Лучше отражают действительность случайные последовательности, которые можно формализовать в виде случайных приращений времени, имеющих заданное распределение, либо случайного потока однородных событий, аналогично потокам заявок в теории массового, обслуживания. Аналогичным образом можно проанализировать и выявить с помощью СИВС особые состояния при движении и обработке информации.

На рис. 2 представлена структура обобщенной имитационной модели.

При моделировании непрерывных производственных процессов по принципу ∆t датчик временных интервалов выдает тактовые импульсы для работы моделирующего алгоритма. Блоки случайных и управляющих воздействий, а также начальных условий служат для ручного ввода условий проведения очередного модельного эксперимента.

Комплекс имитационных функциональных программ по каждому моделируемому объекту определяет условное распределение вероятностей состояний объекта к окончанию каждого момента ДЛ При случайном выборе одного из возможных состояний это осуществляется функциональной подпрограммой; при выборе экспериментатором – программой, заложенной в блоке управляющих воздействий, или, при желании осуществлять этот выбор вручную на каждом такте, вводом новых начальных условий исходя из текущего состояния, определяемого с помощью блока индикации.

Функциональная программа определяет параметры технологической установки на каждом такте в зависимости от заданных начальных условий – характеристик сырья, заданного режима, свойств и условий работы установки. Из модели технологической части программным путем могут быть добавлены соотношения весового и объемного баланса.

Координацию и взаимодействие всех блоков и программ осуществляет программа-диспетчер.

При моделировании дискретных процессов, при котором обычно используют принцип особых состояний, структура имитационной модели изменяется незначительно. Вместо датчика временных интервалов вводится блок, определяющий наличие особого состояния и выдающий команду на переход к следующему. Функциональная программа имитирует на каждом переходе одну операцию на каждом рабочем месте. Характеристики таких операций могут быть детерминированными во времени, например при работе станка-автомата, либо случайными с заданными распределениями. Кроме времени могут имитироваться и другие характеристики – наличие или отсутствие брака, отнесение к некоторому сорту или классу и т.п. Аналогично имитируются сборочные операции, с той разницей, что на каждой операции изменяются не характеристики обрабатываемого материала, а вместо одних наименований – детали, узлы – появляются другие – узлы, изделия – с новыми характеристиками. Однако принципиально операции сборки имитируются аналогично операциям обработки – определяются случайные или детерминированные затраты времени на операцию, значения физических и производственных характеристик.

Для имитации сложных производственных систем требуется создание логико-математической модели исследуемой системы, позволяющей проведение с нею экспериментов на ЭВМ. Модель реализуют в виде комплекса программ, написанных на одном из универсальных языков программирования высокого уровня либо на специальном языке моделирования. С развитием имитационного моделирования появились системы и языки, сочетающие возможности имитации как непрерывных, так и дискретных систем, что позволяет моделировать сложные системы типа предприятий и производственных объединений.

При построении модели, прежде всего, следует определить ее назначение. В модели должны быть отражены все существенные с точки зрения цели ее построения функции моделируемого объекта и в то же время в ней не должно быть ничего лишнего, иначе она будет слишком громоздкой и мало эффективной.

Основным назначением моделей предприятий и объединений является их исследование с целью совершенствования системы управления либо обучения и повышения квалификации управленческого персонала. При этом моделируется не само производство, а отображение производственного процесса в системе управления.

Для построения модели используется укрупненная СИВС. Методом единичной нити выявляют те функции и задачи, в результате которых может быть получен искомый результат в соответствии с назначением модели. На основании логико-функционального анализа строят структурную схему модели. Построение структурной схемы позволяет выделить ряд самостоятельных моделей, входящих в виде составных частей в модель предприятия. На рис. 3 приведен пример построения структурной схемы моделирования финансово-экономических показателей предприятия. Модель учитывает как внешние факторы – спрос на продукцию, план поставок, так и внутренние – затраты на производство, существующие и планируемые производственные возможности.


Некоторые из моделей являются детерминированными – расчет планируемого полного дохода по номенклатуре и количествам в соответствии с планом производства при известных ценах и стоимости упаковки. Модель плана производства является оптимизационной, настраиваемой на один из возможных критериев – максимизацию дохода или использования производственных мощностей; наиболее полное удовлетворение спроса; минимизацию потерь поставляемых материалов и комплектующих изделий и пр. В свою очередь модели спроса на продукцию, планируемых производственных мощностей и плана поставок являются вероятностными с различными законами распределения.

Взаимосвязь между моделями, координация их работы и связь с пользователями осуществляется с помощью специальной программы, которая на рис. 3 не показана. Эффективная работа пользователей с моделью достигается в режиме диалога.

Построение структурной схемы модели не формализовано и во многом зависит от опыта и интуиции ее разработчика. Здесь важно соблюдать общее правило – лучше на первых этапах составления схемы включить в нее большее число элементов с последующим их постепенным сокращением, чем начать с некоторых, кажущихся основными, блоков, намереваясь в последующем их дополнять и детализировать.

После построения схемы, обсуждения ее с заказчиком и корректировки переходят к построению отдельных моделей. Необходимая для этого информация содержится в системных спецификациях – перечень и характеристики задач, необходимые для их решения исходные данные и выходные результаты и т д. Если системные спецификации не составлялись, эти сведения берут из материалов обследования, а иногда прибегают к дополнительным обследованиям.

Важнейшими условиями эффективного использования моделей являются проверка их адекватности и достоверность исходных данных. Если проверка адекватности осуществляется известными методами, то достоверность имеет некоторые особенности. Они заключаются в том, что во многих случаях исследование модели и работу с нею лучше проводить не с реальными данными, а со специально подготовленным их набором. При подготовке набора данных руководствуются целью использования модели, выделяя ту ситуацию, которую хотят промоделировать и исследовать.

Имитационные технологии опираются на построение различных примеров реальных систем, отвечающих профессиональному контексту определённой ситуации. Составляются имитационные модели, соответствующие требованиям данного момента, в работу с которыми погружается обучаемый субъект. Существующему в методиках имитационному и имитационно-игровому моделированию сопутствует воспроизведение достаточно адекватных процессов, происходящих в реальности. Таким образом, обучение даёт возможность формировать реальный профессиональный опыт, несмотря на квази-профессиональную деятельность.

Роли

В процессе обучения предполагаются игровые процедуры, которые предлагают выстроенные имитационные модели, значит, предусматривается и распределение ролей: обучающиеся общаются друг с другом и с преподавателем, имитируя профессиональную деятельность. Поэтому имитационные технологии подразделяются на две части - игровые и неигровые, а помогает определению вида анализ предложенной ситуации. Для этого необходимо уточнить систему внешних условий, которые побуждают начать активные действия. То есть все проблемы, явления, взаимосвязанные факты, которые характеризуют ситуацию, имитационные модели должны вместить.

Определённое событие или конкретный период деятельности организации требует от руководителя адекватных распоряжений, решений и поступков. Методика анализа изучения конкретных ситуаций - детальное и глубокое исследование реальной обстановки либо созданной искусственно, выявление характерных свойств. Это способствует развитию обучаемых в поиске системного подхода к решению проблемы, выявлению вариантов ошибочных решений, разбору критериев для оптимальных решений. Так устанавливаются профессиональные деловые контакты, решения принимаются коллективно, устраняются конфликты.

Ситуации

Различаются ситуации по четырём видам: сначала рассматривается ситуация проблемы, где обучаемым предстоит найти причины возникновения, поставить и разрешить проблему, затем ситуация подлежит оценке по принятым решениям. После этого строится ситуация, иллюстрирующая примерами все поставленные темы данного курса, причём за основу берутся только что решённые проблемы, а завершает тему ситуация-упражнение, где имитационные модели решают нетрудные задачи по методу аналогии, - это так называемые учебные ситуации.

Конкретные виды ситуаций бывают различными: это и классические, и живые, ситуация-инцидент, ситуация с разбором деловой корреспонденции, а также действия по инструкции. Выбор определяют многие факторы: цели изучения, уровень подготовки, наличие технических средств и иллюстрационного материала, - всё зависит от индивидуального стиля преподавателя, творчество которого не ограничивается жёсткой регламентацией ни по выбору разновидностей, ни по способам анализа. Вот первые этапы разработки имитационных моделей.

Практические задания

На практике лучше всего воплощаются идеи контекстного подхода, потому что состоят из конкретных и реальных жизненных ситуаций: случай, история, которые содержит имитационная модель, пример описания событий, имевших место или вполне возможных, закончившихся ошибками в решениях производственных проблем. Задача состоит в выявлении и анализе этих ошибок при применении идеи и концепции данного курса.

Такого плана профессиональное обучение вполне реалистично и действенно по сравнению с постановкой отдельных вопросов, которые рассматриваются чисто теоретически. Ориентация ситуационного обучения такова, что умения и знания преподаются не как предмет, а как средство для решения всевозможных задач, которые возникают в деятельности специалиста. Учебные ситуации строятся на реальных профессиональных производственных фрагментах с учетом всех межличностных отношений, что крайне важно для успешной работы предприятия. Обучаемые получают контур и контекст будущей профессиональной деятельности.

Выбор ситуаций

Это одна из самых трудных преподавательских задач. Примерная учебная ситуация обычно отвечает следующим требованиям:

  1. Сценарий основан на реалиях либо взят из жизни. Это не означает, что необходимо подавать производственный фрагмент с многочисленными деталями и технологическими тонкостями, которые будут отвлекать студента от решения основной задачи. Производственный жаргон в данном случае тоже неуместен.
  2. Учебная ситуация не должна содержать больше пяти-семи моментов, которые комментируются студентами с использованием терминов в русле изучаемой концепции. Имитационная модель, пример которой трудноразрешим, вряд ли быстро научит студентов.
  3. Но учебная ситуация должна быть лишена и примитива: кроме пяти-семи моментов изучаемой проблемы обязательно должны присутствовать две-три связки в тексте. Обычно проблемы не раскладываются в жизни по отдельным полочкам для последовательного разрешения. Проблемы на производстве, обычно, взаимосвязаны с социальными или психологическими неувязками. Особенно важно в обучении применение идей курса.

Текст учебной ситуации

Например, - менеджер по продажам в фирме "Цветок лотоса", специализирующейся на средствах гигиены, косметике и парфюмерии. Она пришла на это место в связи с повышением полгода назад. Беседа с главным менеджером по итогам её работы состоится через десять дней.

До этого Ирина два года преуспевала в отдельной секции фирмы, допустим, продавала средства гигиены, и ей это чрезвычайно нравилось. Её уважали, она была популярна среди продавцов и приобрела много постоянных клиентов.

Развитие ситуации

Повышению она, естественно, обрадовалась и начала с энтузиазмом работать в новой должности. Однако дела почему-то хорошо не пошли. Она не успевала работать в офисе, потому что почти всё время находилась в зале и следила за действиями продавцов. Приходилось даже брать работу на дом. И всё равно она ничего не успевала: просьба начальства подготовить идеи к выставке-продаже была выполнена в последний день, потому что предварительно ничего интересного не придумалось, творчество - не такое простое дело. Заболевшая машинистка не смогла перепечатать бумаги с идеями Ирины. В итоге к намеченному начальством сроку Ирина задание не выполнила. Вот в этот момент более всего ей помогли бы имитационные модели обучения.

После этого всё пошло не так. Потратив время на беседу с постоянной клиенткой, Ирина не обдумала речь, когда её коллега торжественно получал сертификат, даже опоздала на церемонию. Затем несколько раз её подчинённые покидали рабочие места, её не предупредив. Отдел кадров неоднократно напоминал ей о необходимости составления программы обучения по пользованию лечебной косметикой, но связаться с преподавателем из мединститута у Ирины никак не получалось. Она даже младших продавцов всегда опаздывала представлять на должность старших. И ещё Ирина не приготовила квартальный отчёт с прогнозом ассортимента. И даже не ответила на несколько писем клиентов, желающих получить товар почтой. И как вишенка на торте - недавняя ссора с одним из ранее очень уважаемых ею продавцов по поводу ценников. Оказывается не так просто быть хорошим менеджером.

Анализ ситуации

Имитационная модель - это прежде всего прочтение ситуации. Здесь складывается следующая картина из шести пунктов с подпунктами.

  1. На новой работе произошли изменения. Каковы их сдерживающие и побуждающие силы?
  2. До изменений - наличие чувства собственного достоинства и знание механизма продаж.
  3. Мотивация в желании преуспеть, но и сохранить способности к продажам - ролевой конфликт.
  4. Стиль менеджмента - полная неспособность отдать часть полномочий подчинённым. Столкновения с подчинёнными не избежать.
  5. В новой роли: не определила специфику должности, размер нагрузки, не решила простую проблему с перепечаткой, манкирует планированием и контролем, допускает неявку на работу подчинённых, срывает план обучения персонала, не умеет организовать своё время и расставить приоритеты, теряет креативность - новые идеи отсутствуют.
  6. Стиль управления вверенным штатом: допускает вертикальный конфликт, вмешивается в дела подчинённых, не уверена в себе, руководит без помощи менеджмента.

Выявление проблем

Структура имитационных моделей предполагает вторым шагом выявить наметившиеся проблемы для их последовательного решения. Здесь нужно следовать по этим же пунктам, учитывая произведённый анализ, но рассматривая ситуацию с другой целью.

  1. Изменения: существуют ли способы управления изменениями и какие, каким образом уменьшить сопротивление произошедшим изменениям.
  2. Стили руководства: почему выбранный Ириной стиль безуспешен, и в пользу какого лучше от него отказаться.
  3. Мотивация: что говорит теория менеджмента относительно стимулирования Ирины и продавцов.
  4. Специфика рабочих целей: известны ли Ирине все подробности относительно новой работы, каковы были цели и как надо было бы их достичь.
  5. Планирование и контроль: планировала ли Ирина свои действия как менеджер, контролировались ли они.
  6. Конфликт: в чём повод и проблема произошедшего конфликта и как можно было с этим справиться.

Тематические связки

Использование имитационных моделей помогает выстраивать ситуацию от зарождения (побуждений), обнаруживая мотивы её начала, до перехода в новое качество. Каким оно будет, зависит от того, как произведён анализ и какие сделаны выводы. Ни одна ситуация не обходится без связующих тем. Чаще всего имитационные модели воспроизводят реальность не во всех аспектах, но несколько таких связок должны присутствовать в игре обязательно. Здесь они следующие.

  1. Ирина не увидела различий в работе менеджера и продавца.
  2. Ирина была плохо подготовлена к исполнению новой должности.
  3. Ирина не имеет фундаментальных знаний о менеджменте.

Разработка связующих мотивов

Что возможно и что обязательно сделать относительно связующих тем?

  1. Прежде всего необходима передача информации. Начальство Ирины обязано предъявить ей конкретные требования к работе сразу после назначения. Ирина должна поставить подчинённых в известность относительно стиля своего управления на работе.
  2. Во-вторых, необходимо обучение Ирины основам менеджмента, её подчинённых - методам продаж, и, конечно, Ирина и подчинённые должны пройти обучение относительно межличностного взаимодействия.
  3. В-третьих, необходимо чёткое планирование функциональных обязанностей Ирины как менеджера и деятельности всего отдела в целом.
  4. В-четвёртых, должно быть правильное управление персоналом: Ирине необходима помощь в определении цели и приоритета как ежемоментно, так и долгосрочно, то есть отделу кадров есть смысл запланировать повышение квалификации сотрудников, в которых фирма заинтересована.

Вся эта тема напрямую связана только с передачей информации.

Когда игра подходит к этапу подведения итогов и выводов, становится понятно, что такое имитационные модели и чем они полезны. Выводы получаются очень точные и конкретные практически у всех, потому что ситуацию удалось разобрать до малейших деталей.

  • Во-первых, менеджер должен согласовать специфику работы с начальством и донести результаты подчинённым.
  • Во-вторых, все приоритеты и цели должны быть понятны менеджеру и тоже объяснены остальному персоналу.

Ирине необходимо освоить технику менеджмента в управлении собственным временем, в контроле и планировании, в управлении людьми и любым конфликтом, в циркуляции новой информации среди коллектива и в его развитии.

Ирине нужно подробно узнать в отделе кадров о процедурах обучения, а также о повышении квалификации сотрудников, чтобы как можно более правильно их применить. Ей предстоит повышать свой профессиональный уровень самостоятельно, а в перспективе пройти учёбу. Этими рекомендациями можно человека неподготовленного испугать, поэтому нужно сразу разбить их на три раздела: немедленного выполнения, рекомендации средней срочности, и последний пункт - явно долгосрочный. Ирине и её начальству есть смысл обсудить причины неудач и сделать всё, чтобы они не повторялись.

Разобрав, таким образом, искусственно выстроенную ситуацию, каждый студент поймёт, что такое имитационные модели.

Модели экономического развития

Социально-экономическое развитие имеет отличающиеся от других имитационные модели. Это потребовало отдельного названия, чтобы конкретно знать сферу применения того или другого ситуационного искусственного построения. Динамические имитационные модели предназначены именно для прогнозирования работы экономических систем. В названии подчёркивается, что динамика является самой главной характеристикой таких построений, и в их основе лежат принципы системной динамики.

Этапы построения имеют следующую последовательность действий: сначала выстраивается схема когнитивной структуризации, затем подбираются статистические данные, и уточняется схема. Следующий шаг - формируются где описываются когнитивные связи, затем ИДМ компонуется в целом. Происходит отладка и верификация модели, и, наконец, выполняются многовариантные расчёты, в том числе и прогнозные.

Метод сценариев

Сценарный анализ, что означает имитационная модель определённого проекта, нужен для того, чтобы просчитать опасности на пути становления проекта и пути их преодоления. Риск, грозящий инвестициям, может выражаться в отклонении денежного потока, предназначенного данному проекту, вопреки ожиданиям, и чем отклонение больше, тем больше увеличивается риск. Каждый проект демонстрирует возможный диапазон проектных результатов, поэтому, давая им вероятностную оценку, можно оценивать потоки денег, принимая во внимание экспертные оценки вероятностных генераций всех этих потоков или величину отклонений всех компонентов потока от значений ожидания.

Хорош тем, что на основе таких экспертных оценок можно построить как минимум три возможные ситуации развития: пессимистическую, наиболее реальную (вероятную) и оптимистическую. Имитационные модели - это Отличие от реальности здесь только одно - производит действие не сама система, а её модель. Имитационные модели систем выручают в случаях, когда проведение реальных экспериментов как минимум неразумно, а по максимуму - затратно и опасно. Имитация - способ исследования систем без малейшей степени риска. Практически невыполнимо, например, без имитаций оценить риск инвестиционных проектов, где использованы только прогнозные данные о затратах, объёмах продаж, ценах и других составляющих, определяющих риски.

Финансовый анализ

Модели, используемые для решения многих задач, стоящих перед финансовым анализом, содержат случайные величины, не поддающиеся управлению лицам, которые принимают решения. Это стохастические имитационные модели. Имитация позволяет вывести возможные результаты, которым служат основанием вероятностные распределения случайных величин. Также стохастическая имитация часто называется методом Монте-Карло.

Как моделируются риски инвестиционных проектов? Проводится серия многочисленных экспериментов, которые чисто эмпирически оценивают степень влияния разнообразных факторов (то есть исходных величин) на результаты, целиком и полностью зависящие от них. Проведение имитационного эксперимента обычно разбивают на определённые этапы.

Установкой взаимосвязей между показателями исходными и конечными в виде математического неравенства или уравнения делается первый шаг по пути эксперимента. Затем нужно задать машине законы, распределяющие вероятности для ключевых параметров. Далее проводится компьютерная имитация всех значений главных параметров модели, рассчитываются характеристики распределений показателей исходных и конечных. Наконец, проводится сам анализ тех результатов, что выдал компьютер, и принимается решение.