Статистическая сводка и группировка. Статистический ряд распределения. Примеры решения задач. Группировка данных и построение ряда распределения

Результаты группировки собранных статистических данных, как правило, представляются в виде рядов распределения. Ряд распределения - это упорядоченное распределение единиц совокупности на группы по изучаемому признаку.

Ряды распределения делятся на атрибутивные и вариационные, в зависимости от признака, положенного в основу группировки. Если признак качественный, то ряд распределения называется атрибутивным. Примером атрибутивного ряда является распределение предприятий и организаций по формам собственности (см. табл. 3.1).

Если признак, по которому строится ряд распределения, количественный, то ряд называется вариационным.

Вариационный ряд распределения всегда состоит из двух частей: вариант и соответствующих им частот (или частостей). Вариантой называется значение , которое может принимать признак у единиц совокупности, частотой - количество единиц наблюдения, обладающих данным значением признака. Сумма частот всегда равна объему совокупности. Иногда вместо частот рассчитывают частости - это частоты, выраженные либо в долях единицы (тогда сумма всех частостей равна 1), либо в процентах к объему совокупности (сумма частостей будет равна 100%).

Вариационные ряды бывают дискретными и интервальными. У дискретных рядов (табл. 3.7) варианты выражены конкретными числами, чаще всего целыми.

Таблица 3.8. Распределение работников по времени работы в страховой компании
Время работы в компании, полных лет (варианты) Число работающих
Человек (частоты) в % к итогу (частости)
до года 15 11,6
1 17 13,2
2 19 14,7
3 26 20,2
4 10 7,8
5 18 13,9
6 24 18,6
Итого 129 100,0

В интервальных рядах (см. табл. 3.2) значения показателя задаются в виде интервалов. Интервалы имеют две границы: нижнюю и верхнюю. Интервалы могут быть открытыми и закрытыми. У открытых нет одной из границ, так, в табл. 3.2 у первого интервала нет нижней границы, а у последнего - верхней. При построении интервального ряда в зависимости от характера разброса значений признака используют как равные интервальные промежутки, так и неравные (в табл. 3.2 представлен вариационный ряд с равными интервалами).

Если признак принимает ограниченное число значений, обычно не больше 10, строят дискретные ряды распределения. Если вариант больше, то дискретный ряд теряет свою наглядность; в этом случае целесообразно использовать интервальную форму вариационного ряда. При непрерывной вариации признака, когда его значения в определенных пределах отличаются друг от друга на сколь угодно малую величину, также строят интервальный ряд распределения.

3.3.1. Построение дискретных вариационных рядов

Рассмотрим методику построения дискретных вариационных рядов на примере.

Пример 3.2. Имеются следующие данные о количественном составе 60 семей:

Для того чтобы получить представление о распределении семей по числу их членов, следует построить вариационный ряд. Поскольку признак принимает ограниченное число целых значений строим дискретный вариационный ряд. Для этого сначала рекомендуется выписать все значения признака (число членов в семье) в порядке возрастания (т.е. провести ранжирование статистических данных):

Затем необходимо подсчитать число семей, имеющих одинаковый состав. Число членов семей (значение варьирующего признака) - это варианты (будем их обозначать через х), число семей, имеющих одинаковый состав, - это частоты (будем их обозначать через f). Результаты группировки представим в виде следующего дискретного вариационного ряда распределения:

Таблица 3.11.
Число членов семьи (х) Число семей (y)
1 8
2 14
3 20
4 9
5 5
6 4
Итого 60

3.3.2. Построение интервальных вариационных рядов

Покажем методику построения интервальных вариационных рядов распределения на следующем примере.

Пример 3.3. В результате статистического наблюдения получены следующие данные о средней величине процентной ставки 50 коммерческих банков (%):

Таблица 3.12.
14,7 19,0 24,5 20,8 12,3 24,6 17,0 14,2 19,7 18,8
18,1 20,5 21,0 20,7 20,4 14,7 25,1 22,7 19,0 19,6
19,0 18,9 17,4 20,0 13,8 25,6 13,0 19,0 18,7 21,1
13,3 20,7 15,2 19,9 21,9 16,0 16,9 15,3 21,4 20,4
12,8 20,8 14,3 18,0 15,1 23,8 18,5 14,4 14,4 21,0

Как видим, просматривать такой массив данных крайне неудобно, кроме того, не видно закономерностей изменения показателя. Построим интервальный ряд распределения.

  1. Определим число интервалов.

    Число интервалов на практике часто задается самим исследователем исходя из задач каждого конкретного наблюдения. Вместе с тем его можно вычислить и математически по формуле Стерджесса

    n = 1 + 3,322lgN,

    где n - число интервалов;

    N - объем совокупности (число единиц наблюдения).

    Для нашего примера получим: n = 1 + 3,322lgN = 1 + 3,322lg50 = 6,6 " 7.

  2. Определим величину интервалов (i) по формуле

    где х max - максимальное значение признака;

    х min - минимальное значение признака.

    Для нашего примера

    Интервалы вариационного ряда наглядны, если их границы имеют "круглые" значения, поэтому округлим величину интервала 1,9 до 2, а минимальное значение признака 12,3 до 12,0.

  3. Определим границы интервалов.

    Интервалы, как правило, записывают таким образом, чтобы верхняя граница одного интервала являлась одновременно нижней границей следующего интервала. Так, для нашего примера получим: 12,0-14,0; 14,0-16,0; 16,0-18,0; 18,0-20,0; 20,0-22,0; 22,0-24,0; 24,0-26,0.

    Подобная запись означает, что признак непрерывный. Если же варианты признака принимают строго определенные значения, например, только целые, но их количество слишком велико для построения дискретного ряда, то можно создать интервальный ряд, где нижняя граница интервала не будет совпадать с верхней границей следующего интервала (это будет означать, что признак дискретный). Например, в распределении работников предприятия по возрасту можно создать следующие интервальные группы лет: 18-25, 26-33, 34-41, 42-49, 50-57, 58-65, 66 и более.

    Кроме того, в нашем примере мы могли бы сделать первый и последний интервалы открытыми, т.д. записать: до 14,0; 24,0 и выше.

  4. По исходным данным построим ранжированный ряд. Для этого запишем в порядке возрастания значения, которые принимает признак. Результаты представим в таблице: Таблица 3.13. Ранжированный ряд величин процентной ставки коммерческих банков
    Ставка банка % (варианты)
    12,3 17,0 19,9 23,8
    12,8 17,4 20,0 24,5
    13,0 18,0 20,0 24,6
    13,3 18,1 20,4 25,1
    13,8 18,5 20,4 25,6
    14,2 18,7 20,5
    14,3 18,8 20,7
    14,4 18,9 20,7
    14,7 19,0 20,8
    14,7 19,0 21,0
    15,1 19,0 21,0
    15,2 19,0 21,1
    15,3 19,0 21,4
    16,0 19,6 21,9
    16,9 19,7 22,7
  5. Подсчитаем частоты.

    При подсчете частот может возникнуть ситуация, когда значение признака попадет на границу какого-либо интервала. В таком случае можно руководствоваться правилом: данная единица приписывается к тому интервалу, для которого ее значение является верхней границей. Так, значение 16,0 в нашем примере будет относиться ко второму интервалу.

Результаты группировки, полученные в нашем примере, оформим в таблице.

Таблица 3.14. Распределение коммерческих банков по величине кредитной ставки
Краткая ставка, % Количество банков, ед. (частоты) Накопленные частоты
12,0-14,0 5 5
14,0-16,0 9 14
16,0-18,0 4 18
18,0-20,0 15 33
20,0-22,0 11 44
22,0-24,0 2 46
24,0-26,0 4 50
Итого 50 -

В последней графе таблицы представлены накопленные частоты, которые получают путем последовательного суммирования частот, начиная с первой (например, для первого интервала - 5, для второго интервала 5 + 9 = 14, для третьего интервала 5 + 9 + 4 = 18 и т.д.). Накопленная частота, например, 33, показывает, что у 33 банков кредитная ставка не превышает 20% (верхняя граница соответствующего интервала).

В процессе группировки данных при построении вариационных рядов иногда используются неравные интервалы. Это относится к тем случаям, когда значения признака подчиняются правилу арифметической или геометрической прогрессии или когда применение формулы Стерджесса приводит к появлению "пустых" интервальных групп, не содержащих ни одной единицы наблюдения. Тогда границы интервалов задаются произвольно самим исследователем исходя из здравого смысла и целей обследования либо по формулам. Так, для данных, изменяющихся в арифметической прогрессии, величина интервалов вычисляется следующим образом.

Дискретный вариационный ряд строится для дискретный признаков.

Для того, чтобы построить дискретный вариационный ряд нужно выполнить следующие действия: 1) упорядочить единицы наблюдения по возрастанию изучаемого значения признака,

2) определить все возможные значения признака x i , упорядочить их по возрастанию,

значением признака, i .

частота значения признака и обозначают f i . Сумма всех частот ряда равна количеству элементов в изучаемой совокупности.

Пример 1 .

Список оценок полученных студентами на экзаменах: 3; 4; 3; 5; 4; 2; 2; 4; 4; 3; 5; 2; 4; 5; 4; 3; 4; 3; 3; 4; 4; 2; 2; 5; 5; 4; 5; 2; 3; 4; 4; 3; 4; 5; 2; 5; 5; 4; 3; 3; 4; 2; 4; 4; 5; 4; 3; 5; 3; 5; 4; 4; 5; 4; 4; 5; 4; 5; 5; 5.

Здесь число Х – оценка является дискретной случайной величиной, а полученный список оценок - статистические (наблюдаемые) данные .

    упорядочить единицы наблюдения по возрастанию изучаемого значения признака:

2; 2; 2; 2; 2; 2; 2; 2; 3; 3; 3; 3; 3; 3; 3; 3; 3; 3; 3; 3; 4; 4; 4; 4; 4; 4; 4; 4; 4; 4; 4; 4; 4; 4; 4; 4; 4; 4; 4; 4; 4; 4; 4; 5; 5; 5; 5; 5; 5; 5; 5; 5; 5; 5; 5; 5; 5; 5; 5; 5.

2) определить все возможные значения признака x i , упорядочить их по возрастанию:

В данном примере все оценки можно разделить на четыре группы со следующими значениями: 2; 3; 4; 5.

Значение случайной величины, соответствующее отдельной группе наблюдаемых данных, называют значением признака, вариантом (вариантой) и обознпчают x i .

Число, которое показывает, сколько раз встречается соответствующее значение признака в ряде наблюдений называют частота значения признака и обозначают f i .

Для нашего примера

оценка 2 встречается - 8 раз,

оценка 3 встречается - 12 раз,

оценка 4 встречается - 23 раза,

оценка 5 встречается - 17 раз.

Всего 60 оценок.

4) записать полученные данные в таблицу из двух строк (столбцов) - x i и f i .

На основании этих данных можно построить дискретный вариационный ряд

Дискретный вариационный ряд – это таблица, в которой указаны встречающиеся значения изучаемого признака как отдельные значения по возрастанию и их частоты

  1. Построение интервального вариационного ряда

Кроме дискретного вариационного ряда часто встречается такой способ группировки данных, как интервальный вариационный ряд.

Интервальный ряд строится если:

    признак имеет непрерывный характер изменения;

    дискретных значений получилось очень много (больше 10)

    частоты дискретных значений очень малы (не превышают 1-3 при относительно большем количестве единиц наблюдения);

    много дискретных значений признака с одинаковыми частотами.

Интервальный вариационный ряд – это способ группировки данных в виде таблицы, которая имеет две графы (значения признака в виде интервала значений и частота каждого интервала).

В отличие от дискретного ряда значения признака интервального ряда представлены не отдельными значениями, а интервалом значений («от - до»).

Число, которое показывает, сколько единиц наблюдения попало в каждый выделенный интервал, называется частота значения признака и обозначают f i . Сумма всех частот ряда равна количеству элементов (единиц наблюдения) в изучаемой совокупности.

Если единица обладает значением признака, равным величине верхней границы интервала, то ее следует относить к следующему интервалу.

Например, ребёнок с ростом 100 см попадёт во 2-ой интервал, а не в первый; а ребёнок с ростом 130 см попадёт в последний интервал, а не в третий.

На основании этих данных можно построить интервальный вариационный ряд.

У каждого интервала есть нижняя граница (х н), верхняя граница (х в) и ширина интервала (i ).

Граница интервала – это значение признака, которое лежит на границе двух интервалов.

рост детей (см)

рост детей (см)

количество детей

больше 130

Если у интервала есть верхняя и нижняя граница, то он называется закрытый интервал . Если у интервала есть только нижняя или только верхняя граница, то это – открытый интервал. Открытым может быть только самый первый или самый последний интервал. В приведённом примере последний интервал – открытый.

Ширина интервала (i ) – разница между верхней и нижней границей.

i = х н - х в

Ширина открытого интервала принимается такой же, как ширина соседнего закрытого интервала.

рост детей (см)

количество детей

Ширина интервала (i)

для расчётов 130+20=150

20 (потому что ширина соседнего закрытого интервала – 20)

Все интервальные ряды делятся на интервальные ряды с равными интервалами и интервальные ряды с неравными интервалами. В интервальных рядах с равными интервалами ширина всех интервалов одинаковая. В интервальных рядах с неравными интервалами ширина интервалов разная.

В рассматриваемом примере - интервальный ряд с неравными интервалами.

Математическая статистика - раздел математики, посвященный математическим методам обработки, систематизации и использования статистических данных для научных и практических выводов.

3.1. ОСНОВНЫЕ ПОНЯТИЯ МАТЕМАТИЧЕСКОЙ СТАТИСТИКИ

В медико-биологических задачах часто приходится исследовать распределение того или иного признака для очень большого числа индивидуумов. У разных индивидуумов этот признак имеет различное значение, поэтому он является случайной величиной. Например, любой лечебный препарата имеет различную эффективность при его применении к разным пациентам. Однако для того чтобы составить представление об эффективности данного препарата, нет необходимости применять его ко всем больным. Можно проследить результаты применения препарата к сравнительно небольшой группе больных и на основании полученных данных выявить существенные черты (эффективность, противопоказания) процесса лечения.

Генеральная совокупность - подлежащая изучению совокупность однородных элементов, характеризуемых некоторым признаком. Этот признак является непрерывной случайной величиной с плотностью распределения f(x).

Например, если нас интересует распространенность какого-либо заболевания в некотором регионе, то генеральная совокупность - все население региона. Если же мы хотим выяснить подверженность этому заболеванию мужчин и женщин по отдельности, то следует рассматривать две генеральные совокупности.

Для изучения свойств генеральной совокупности отбирают некоторую часть ее элементов.

Выборка - часть генеральной совокупности, выбираемая для обследования (лечения).

Если это не вызывает недоразумений, то выборкой называют как совокупность объектов, отобранных для обследования, так и совокупность

значений исследуемого признака, полученных при обследовании. Эти значения могут быть представлены несколькими способами.

Простой статистический ряд - значения исследуемого признака, записанные в том порядке, в котором они были получены.

Пример простого статистического ряда, полученного при измерении скорости поверхностной волны (м/с) в коже лба у 20 пациентов приведен в табл. 3.1.

Таблица 3.1. Простой статистический ряд

Простой статистический ряд - основной и самый полный способ записи результатов обследования. Он может содержать сотни элементов. Окинуть такую совокупность одним взглядом весьма затруднительно. Поэтому большие выборки обычно подвергают разбиению на группы. Для этого область изменения признака разбивают на несколько (N) интервалов равной ширины и подсчитывают относительные частоты (n/n) попадания признака в эти интервалы. Ширина каждого интервала равна:

Границы интервалов имеют следующие значения:

Если какой-то элемент выборки является границей между двумя соседними интервалами, то его относят к левому интервалу. Сгруппированные таким образом данные называют интервальным статистическим рядом.

- это таблица, в которой приведены интервалы значений признака и относительные частоты попадания признака в эти интервалы.

В нашем случае можно образовать, например, такой интервальный статистический ряд (N = 5, d = 4), табл. 3.2.

Таблица 3.2. Интервальный статистический ряд

Здесь к интервалу 28-32 отнесены два значения равные 28 (табл. 3.1), а к интервалу 32-36 - значения 32, 33, 34 и 35.

Интервальный статистический ряд можно изобразить графически. Для этого по оси абсцисс откладывают интервалы значений признака и на каждом из них, как на основании, строят прямоугольник с высотой, равной относительной частоте. Полученная столбцовая диаграмма называется гистограммой.

Рис. 3.1. Гистограмма

На гистограмме статистические закономерности распределения признака просматриваются достаточно отчетливо.

При большом объеме выборки (несколько тысяч) и малой ширине столбцов форма гистограммы близка к форме графика плотности распределения признака.

Число столбцов гистограммы можно выбрать по следующей формуле:

Построение гистограммы вручную - процесс долгий. Поэтому разработаны компьютерные программы для их автоматического построения.

3.2. ЧИСЛОВЫЕ ХАРАКТЕРИСТИКИ СТАТИСТИЧЕСКОГО РЯДА

Многие статистические процедуры используют выборочные оценки для математического ожидания и дисперсии (или СКО) генеральной совокупности.

Выборочное среднее (Х) - это среднее арифметическое всех элементов простого статистического ряда:

Для нашего примера Х = 37,05 (м/с).

Выборочное среднее - это наилучшая оценка генерального среднего М.

Выборочная дисперсия s 2 равна сумме квадратов отклонений элементов от выборочного среднего, поделенной на n - 1:

В нашем примере s 2 = 25,2 (м/с) 2 .

Обратите внимание, что при вычислении выборочной дисперсии в знаменателе формулы стоит не объем выборки n, а n-1. Это связано с тем, что при вычислении отклонений в формуле (3.3) вместо неизвестного математического ожидания используется его оценка - выборочное среднее.

Выборочная дисперсия - это наилучшая оценка генеральной дисперсии (σ 2).

Выборочное среднеквадратическое отклонение (s) - это квадратный корень из выборочной дисперсии:

Для нашего примера s = 5,02 (м/с).

Выборочное среднеквадратическое отклонение - это наилучшая оценка генерального СКО (σ).

При неограниченном увеличении объема выборки все выборочные характеристики стремятся к соответствующим характеристикам генеральной совокупности.

Для вычисления выборочных характеристик используют компьютерные формулы. В приложении Excel эти вычисления выполняют статистические функции СРЗНАЧ, ДИСП. СТАНДОТКЛОН.

3.3. ИНТЕРВАЛЬНАЯ ОЦЕНКА

Все выборочные характеристики являются случайными величинами. Это означает, что для другой выборки того же объема значения выборочных характеристик получатся другими. Таким образом, выборочные

характеристики являются лишь оценками соответствующих характеристик генеральной совокупности.

Недостатки выборочного оценивания компенсирует интервальная оценка, представляющая числовой интервал, внутри которого с заданной вероятностью Р д находится истинное значение оцениваемого параметра.

Пусть U r - некоторый параметр генеральной совокупности (генеральное среднее, генеральная дисперсия и т.д.).

Интервальной оценкой параметра U r называется интервал (U 1 , U 2), удовлетворяющий условию:

P(U < Ur < U2) = Рд. (3.5)

Вероятность Р д называется доверительной вероятностью.

Доверительная вероятность Р д - вероятность того, что истинное значение оцениваемой величины находится внутри указанного интервала.

При этом интервал (U 1 , U 2) называется доверительным интервалом для оцениваемого параметра.

Часто вместо доверительной вероятности используют связанную с ней величину α = 1 - Р д, которая называется уровнем значимости.

Уровень значимости - это вероятность того, что истинное значение оцениваемого параметра находится за пределами доверительного интервала.

Иногда α и Р д выражают в процентах, например, 5% вместо 0,05 и 95% вместо 0,95.

При интервальном оценивании сначала выбирают соответствующую доверительную вероятность (обычно 0,95 или 0,99), а затем находят соответствующий интервал значений оцениваемого параметра.

Отметим некоторые общие свойства интервальных оценок.

1. Чем ниже уровень значимости (чем больше Р д), тем шире интервальная оценка. Так, если при уровне значимости 0,05 интервальная оценка генерального среднего есть 34,7 < М < 39,4, то для уровня 0,01 она будет гораздо шире: 33,85 < М < 40,25.

2. Чем больше объем выборки n, тем уже интервальная оценка с выбранным уровнем значимости. Пусть, например, 5 - процентная оценка генеральной средней (β=0,05), полученная по выборке из 20 элементов, тогда 34,7 < М < 39,4.

Увеличив объем выборки до 80, мы при том же уровне значимости получим более точную оценку: 35,5 < М < 38,6.

В общем случае построение надежных доверительных оценок требует знания закона, по которому оцениваемый случайный признак распределен в генеральной совокупности. Рассмотрим, как строится интервальная оценка генерального среднего признака, который распределен в генеральной совокупности по нормальному закону.

3.4. ИНТЕРВАЛЬНАЯ ОЦЕНКА ГЕНЕРАЛЬНОГО СРЕДНЕГО ДЛЯ НОРМАЛЬНОГО ЗАКОНА РАСПРЕДЕЛЕНИЯ

Построение интервальной оценки генерального среднего М для генеральной совокупности с нормальным законом распределения основано на следующем свойстве. Для выборки объема n отношение

подчиняется распределению Стьюдента с числом степеней свободы ν = n - 1.

Здесь Х - выборочное среднее, а s - выборочное СКО.

Используя таблицы распределения Стьюдента или их компьютерный аналог, можно найти такое граничное значение что c заданной доверительной вероятностью выполняется неравенство:

Этому неравенству соответствует неравенство для М:

где ε - полуширина доверительного интервала.

Таким образом, построение доверительного интервала для М проводится в следующей последовательности.

1. Выбирают доверительную вероятность Р д (обычно 0,95 или 0,99) и для нее по таблице распределения Стьюдента находят параметр t

2. Рассчитывают полуширину доверительного интервала ε:

3. Получают интервальную оценку генерального среднего с выбранной доверительной вероятностью:

Кратко это записывается так:

Для нахождения интервальных оценок разработаны компьютерные процедуры.

Поясним, как пользоваться таблицей распределения Стьюдента. Эта таблица имеет два «входа»: левый столбец, называемый числом степеней свободы ν = n - 1, и верхняя строка - уровень значимости α. На пересечении соответствующей строки и столбца находят коэффициент Стьюдента t.

Применим этот метод к нашей выборке. Фрагмент таблицы распределения Стьюдента представлен ниже.

Таблица 3.3. Фрагмент таблицы распределения Стьюдента

Простой статистический ряд для выборки из 20 человек (n = 20, ν =19) представлен в табл. 3.1. Для этого ряда расчеты по формулам (3.1-3.3) дают: Х = 37,05; s = 5,02.

Выберем α = 0,05 (Р д = 0,95). На пересечении строки «19» и столбца «0,05» найдем t = 2,09.

Вычислим точность оценки по формуле (3.6): ε = 2,09?5,02/λ /20 = 2,34.

Построим интервальную оценку: с вероятностью 95% неизвестное генеральное среднее удовлетворяет неравенству:

37,05 - 2,34 < М < 37,05 + 2,34, или М = 37,05 ± 2,34 (м/с), Р д = 0,95.

3.5. МЕТОДЫ ПРОВЕРКИ СТАТИСТИЧЕСКИХ ГИПОТЕЗ

Статистические гипотезы

Прежде чем сформулировать, что такое статистическая гипотеза, рассмотрим следующий пример.

Для сравнения двух методик лечения некоторого заболевания были отобраны две группы пациентов по 20 человек, лечение которых проводилось по этим методикам. Для каждого пациента фиксировалось количество процедур, после которого достигался положительный эффект. По этим данным для каждой группы находились выборочные средние (Х), выборочные дисперсии (s 2) и выборочные СКО (s).

Результаты представлены в табл. 3.4.

Таблица 3.4

Количество процедур, необходимое для получения положительного эффекта, - случайная величина, вся информация о которой на данный момент содержится в приведенной выборке.

Из табл. 3.4 видно, что выборочное среднее в первой группе меньше, чем во второй. Означает ли это, что и для генеральных средних имеет место такое же соотношение: М 1 < М 2 ? Достаточно ли статистических данных для такого вывода? Ответы на эти вопросы и дает статистическая проверка гипотез.

Статистическая гипотеза - это предположение относительно свойств генеральных совокупностей.

Мы будем рассматривать гипотезы о свойствах двух генеральных совокупностей.

Если генеральные совокупности имеют известные, одинаковые распределения оцениваемой величины, а предположения касаются величин некоторого параметра этого распределения, то гипотезы называются параметрическими. Например, выборки извлечены из генеральных совокупностей с нормальным законом распределения и одинаковой дисперсией. Требуется выяснить, одинаковы ли генеральные средние этих совокупностей.

Если о законах распределения генеральных совокупностей ничего не известно, то гипотезы об их свойствах называют непараметрическими. Например, одинаковы ли законы распределения генеральных совокупностей, из которых извлечены выборки.

Нулевая и альтернативная гипотезы.

Задача проверки гипотез. Уровень значимости

Познакомимся с терминологией, применяемой при проверке гипотез.

Н 0 - нулевая гипотеза (гипотеза скептика) - это гипотеза об отсутствии различий между сравниваемыми выборками. Скептик считает, что различия между выборочными оценками, полученными по результатам исследований, - случайны;

Н 1 - альтернативная гипотеза (гипотеза оптимиста) - это гипотеза о наличии различий между сравниваемыми выборками. Оптимист считает, что различия между выборочными оценками вызваны объективными причинами и соответствуют различиям генеральных совокупностей.

Проверка статистических гипотез осуществима только тогда, когда из элементов сравниваемых выборок можно составить некоторую величину (критерий), закон распределения которой в случае справедливости Н 0 известен. Тогда для этой величины можно указать доверительный интервал, в который с заданной вероятностью Р д попадает ее значение. Этот интервал называют критической областью. Если значение критерия попадает в критическую область, то принимается гипотеза Н 0 . В противном случае принимается гипотеза Н 1 .

В медицинских исследованиях используют Р д = 0,95 или Р д = 0,99. Этим значениям соответствуют уровни значимости α = 0,05 или α = 0,01.

При проверке статистических гипотез уровнем значимости (α) называется вероятность отклонения нулевой гипотезы, когда она верна.

Обратите внимание на то, что по своей сути процедура проверки гипотез направлена на обнаружение различий, а не на подтверждение их отсутствия. При выходе значения критерия за пределы критической области мы можем с чистым сердцем сказать «скептику» - ну что, Вы еще хотите?! Если бы различия отсутствовали, то с вероятностью 95% (или 99%) расчетное значение было бы в указанных пределах. Так ведь нет!..

Ну а если значение критерия попадает в критическую область, то нет никаких оснований считать что гипотеза Н 0 верна. Это, скорее всего, указывает на одну из двух возможных причин.

1. Объемы выборок недостаточно велики, чтобы обнаружить имеющиеся различия. Вполне вероятно, что продолжение экспериментов принесет успех.

2. Различия есть. Но они настолько малы, что не имеют практического значения. В этом случае продолжение экспериментов не имеет смысла.

Перейдем к рассмотрению некоторых статистических гипотез, используемых в медицинских исследованиях.

3.6. ПРОВЕРКА ГИПОТЕЗ О РАВЕНСТВЕ ДИСПЕРСИЙ, F-КРИТЕРИЙ ФИШЕРА

В некоторых клинических исследованиях о положительном эффекте свидетельствует не столько величина исследуемого параметра, сколько его стабилизация, уменьшение его колебаний. В этом случае возникает вопрос о сравнении двух генеральных дисперсий по результатам выборочного обследования. Эта задача может быть решена с помощью критерия Фишера.

Постановка задачи

нормальным законом распределения. Объемы выборок -

n 1 и n 2 , а выборочные дисперсии равны s 1 и s 2 2 генеральные дисперсии.

Проверяемые гипотезы:

Н 0 - генеральные дисперсии одинаковы;

Н 1 - генеральные дисперсии различны.

Показано, если выборки извлечены из генеральных совокупностей с нормальным законом распределения, то при справедливости гипотезы Н 0 отношение выборочных дисперсий подчиняется распределению Фишера. Поэтому в качестве критерия для проверки справедливости Н 0 берется величина F, вычисляемая по формуле:

где s 1 и s 2 - выборочные дисперсии.

Это отношение подчиняется распределению Фишера с числом степеней свободы числителя ν 1 = n 1 - 1 и числом степеней свободы знаменателя ν 2 = n 2 - 1. Границы критической области находятся по таблицам распределения Фишера или с помощью компьютерной функции БРАСПОБР.

Для примера, представленного в табл. 3.4, получим: ν 1 = ν 2 = 20 - 1 = 19; F = 2,16/4,05 = 0,53. При α = 0,05 границы критической области равны соответственно: = 0,40, = 2,53.

Значение критерия попало в критическую область, поэтому принимается гипотеза Н 0: генеральные дисперсии выборок одинаковы.

3.7. ПРОВЕРКА ГИПОТЕЗ ОТНОСИТЕЛЬНО РАВЕНСТВА СРЕДНИХ, t-КРИТЕРИЙ СТЬЮДЕНТА

Задача сравнения средних двух генеральных совокупностей возникает, когда практическое значение имеет именно величина исследуемого признака. Например, когда сравниваются сроки лечения двумя различными методами или количества осложнений, возникающих при их применении. В этом случае можно использовать t-критерий Стьюдента.

Постановка задачи

Получены две выборки {Х 1 } и {Х 2 }, извлеченные из генеральных совокупностей с нормальным законом распределения и одинаковыми дисперсиями. Объемы выборок - n 1 и n 2 , выборочные средние равны Х 1 и Х 2, а выборочные дисперсии - s 1 2 и s 2 2 соответственно. Требуется сравнить между собой генеральные средние.

Проверяемые гипотезы:

Н 0 - генеральные средние одинаковы;

Н 1 - генеральные средние различны.

Показано, что в случае справедливости гипотезы Н 0 величина t, вычисляемая по формуле:

распределена по закону Стьюдента с числом степеней свободы ν = ν 1 + + ν2 - 2.

Здесь где ν 1 = n 1 - 1 - число степеней свободы для первой выборки; ν 2 = n 2 - 1 - число степеней свободы для второй выборки.

Границы критической области находят по таблицам t-распределения или с помощью компьютерной функции СТЬЮДРАСПОБР. Распределение Стьюдента симметрично относительно нуля, поэтому левая и правая границы критической области одинаковы по модулю и противоположны по знаку: -и

Для примера, представленного в табл. 3.4, получим:

ν 1 = ν 2 = 20 - 1 = 19; ν = 38, t = -2,51. При α = 0,05 = 2,02.

Значения критерия выходит за левую границу критической области, поэтому принимаем гипотезу Н 1: генеральные средние различны. При этом среднее генеральной совокупности первой выборки МЕНЬШЕ.

Применимость t-критерия Стьюдента

Критерий Стьюдента применим только к выборкам из нормальных совокупностей с одинаковыми генеральными дисперсиями. Если хотя бы одно из условий нарушено, то применимость критерия сомнительна. Требование нормальности генеральной совокупности обычно игнорируют, ссылаясь на центральную предельную теорему. Действительно, разность выборочных средних, стоящая в числителе (3.10), может считаться нормально распределенной при ν > 30. Но вопрос о равенстве дисперсий проверке не подлежит, и ссылки на то, что критерий Фишера не обнаружил различий, принимать во внимание нельзя. Тем не менее t-критерий достаточно широко применяется для обнаружения различий в средних значениях генеральных совокупностей, хотя и без достаточных оснований.

Ниже рассматривается непараметрический критерий, который с успехом используют для этих же целей и который не требует ни нормальности, ни равенства дисперсий.

3.8. НЕПАРАМЕТРИЧЕСКОЕ СРАВНЕНИЕ ДВУХ ВЫБОРОК: КРИТЕРИЙ МАННА-УИТНИ

Непараметрические критерии предназначены для обнаружения различий в законах распределения двух генеральных совокупностей. Критерии, которые чувствительны к различиям генеральных средних, называют критериями сдвига. Критерии, которые чувствительны к различиям генеральных дисперсий, называют критериями масштаба. Критерий Манна-Уитни относится к критериям сдвига и используется для обнаружения различий в средних значениях двух генеральных совокупностей, выборки из которых представлены в ранговой шкале. Измеренные признаки распологаются на этой шкале в порядке возрастания, а затем нумеруются целыми числами 1, 2... Эти числа и называются рангами. Равным величинам присваивают одинаковые ранги. Значение имеет не сама величина признака, а лишь порядковое место, который она занимает среди других величин.

В табл. 3.5. первая группа из таблицы 3.4 представлена в развернутом виде (строка 1), подвергнута ранжированию (стока 2), а затем ранги одинаковых величин заменены среднеарифметическими значениями. Например, элементы 4 и 4, стоящие в первой строке, получили ранги 2 и 3, которые затем заменены на одинаковые значения 2,5.

Таблица 3.5

Постановка задачи

Независимые выборки {Х 1 } и {Х 2 } извлечены из генеральных совокупностей с неизвестными законами распределения. Объемы выборок n 1 и n 2 соответственно. Значения элементов выборок представлены в ранговой шкале. Требуется проверить, различаются ли эти генеральные совокупности между собой?

Проверяемые гипотезы:

Н 0 - выборки принадлежат к одной генеральной совокупности; Н 1 - выборки принадлежат к различным генеральным совокупностям.

Для проверки таких гипотез применяется {/-критерий Манна-Уитни.

Сначала из двух выборок составляется объединенная выборка {X}, элементы которой ранжируются. Затем находится сумма рангов, соответствующих элементам первой выборки. Эта сумма и является критерием для проверки гипотез.

U = Сумме рангов первой выборки. (3.11)

Для независимых выборок, объемы которых больше 20, величина U подчиняется нормальному распределению, математическое ожидание и СКО которого равны:

Поэтому границы критической области находятся по таблицам нормального распределения.

Для примера, представленного в табл. 3.4, получим: ν 1 = ν 2 = 20 - 1 = 19, U = 339, μ = 410, σ = 37. Для α = 0,05 получим: и лев = 338, и прав = 482.

Значение критерия выходит за левую границу критической области, поэтому принимается гипотеза Н 1: генеральные совокупности имеют различные законы распределения. При этом среднее генеральной совокупности первой выборки МЕНЬШЕ.

Важнейшим этапом исследования социально-экономических явлений и процессов является систематизация первичных данных и получение на этой основе сводной характеристики всего объекта при помощи обобщающих показателей, что достигается путем сводки и группировки первичного статистического материала.

Статистическая сводка - это комплекс последовательных операций по обобщению конкретных единичных фактов, образующих совокупность, для выявления типичных черт и закономерностей, присущих изучаемому явлению в целом. Проведение статистической сводки включает следующие этапы :

  • выбор группировочного признака;
  • определение порядка формирования групп;
  • разработка системы статистических показателей для характеристики групп и объекта в целом;
  • разработка макетов статистических таблиц для представления результатов сводки.

Статистической группировкой называется расчленение единиц изучаемой совокупности на однородные группы по определенным существенным для них признакам. Группировки являются важнейшим статистическим методом обобщения статистических данных, основой для правильного исчисления статистических показателей.

Различают следующие виды группировок: типологические, структурные, аналитические. Все эти группировки объединяет то, что единицы объекта разделены на группы по какому-либо признаку.

Группировочным признаком называется признак, по которому проводится разбиение единиц совокупности на отдельные группы. От правильного выбора группировочного признака зависят выводы статистического исследования. В качестве основания группировки необходимо использовать существенные, теоретически обоснованные признаки (количественные или качественные).

Количественные признаки группировки имеют числовое выражение (объем торгов, возраст человека, доход семьи и т. д.), а качественные признаки группировки отражают состояние единицы совокупности (пол, семейное положение, отраслевая принадлежность предприятия, его форма собственности и т. д.).

После того, как определено основание группировки следует решить вопрос о количестве групп, на которые надо разбить исследуемую совокупность. Число групп зависит от задач исследования и вида показателя, положенного в основание группировки, объема совокупности, степени вариации признака.

Например, группировка предприятий по формам собственности учитывает муниципальную, федеральную и собственность субъектов федерации. Если группировка производится по количественному признаку, то тогда необходимо обратить особое внимание на число единиц исследуемого объекта и степень колеблемости группировочного признака.

Когда определено число групп, то следует определить интервалы группировки. Интервал - это значения варьирующего признака, лежащие в определенных границах. Каждый интервал имеет свою величину, верхнюю и нижнюю границы или хотя бы одну из них.

Нижней границей интервала называется наименьшее значение признака в интервале, а верхней границей - наибольшее значение признака в интервале. Величина интервала представляет собой разность между верхней и нижней границами.

Интервалы группировки в зависимости от их величины бывают: равные и неравные. Если вариация признака проявляется в сравнительно узких границах и распределение носит равномерный характер, то строят группировку с равными интервалами. Величина равного интервала определяется по следующей формуле :

где Хmax, Хmin - максимальное и минимальное значения признака в совокупности; n - число групп.

Простейшая группировка, в которой каждая выделенная группа характеризуется одним показателем представляет собой ряд распределения.

Статистический ряд распределения - это упорядоченное распределение единиц совокупности на группы по определенному признаку. В зависимости от признака, положенного в основу образования ряда распределения, различают атрибутивные и вариационные ряды распределения.

Атрибутивными называют ряды распределения, построенные по качественным признакам, то есть признакам, не имеющим числового выражения (распределение по видам труда, по полу, по профессии и т.д.). Атрибутивные ряды распределения характеризуют состав совокупности по тем или иным существенным признакам. Взятые за несколько периодов, эти данные позволяют исследовать изменение структуры.

Вариационными рядами называют ряды распределения, построенные по количественному признаку. Любой вариационный ряд состоит из двух элементов: вариантов и частот. Вариантами называются отдельные значения признака, которые он принимает в вариационном ряду, то есть конкретное значение варьирующего признака.

Частотами называются численности отдельных вариант или каждой группы вариационного ряда, то есть это числа, которые показывают, как часто встречаются те или иные варианты в ряду распределения. Сумма всех частот определяет численность всей совокупности, ее объем. Частостями называются частоты, выраженные в долях единицы или в процентах к итогу. Соответственно сумма частостей равна 1 или 100%.

В зависимости от характера вариации признака различают три формы вариационного ряда: ранжированный ряд, дискретный ряд и интервальный ряд.

Ранжированный вариационный ряд - это распределение отдельных единиц совокупности в порядке возрастания или убывания исследуемого признака. Ранжирование позволяет легко разделить количественные данные по группам, сразу обнаружить наименьшее и наибольшее значения признака, выделить значения, которые чаще всего повторяются.

Дискретный вариационный ряд характеризует распределение единиц совокупности по дискретному признаку, принимающему только целые значения. Например, тарифный разряд, количество детей в семье, число работников на предприятии и др.

Если признак имеет непрерывное изменение, которые в определенных границах могут принимать любые значения («от - до»), то для этого признака нужно строить интервальный вариационный ряд . Например, размер дохода, стаж работы, стоимость основных фондов предприятия и др.

Примеры решения задач по теме «Статистическая сводка и группировка»

Задача 1 . Имеется информация о количестве книг, полученных студентами по абонементу за прошедший учебный год.

Построить ранжированный и дискретный вариационные ряды распределения, обозначив элементы ряда.

Решение

Данная совокупность представляет собой множество вариантов количества получаемых студентами книг. Подсчитаем число таких вариантов и упорядочим в виде вариационного ранжированного и вариационного дискретного рядов распределения.

Задача 2 . Имеются данные о стоимости основных фондов у 50 предприятий, тыс. руб.

Построить ряд распределения, выделив 5 групп предприятий (с равными интервалами).

Решение

Для решения выберем наибольшее и наименьшее значения стоимости основных фондов предприятий. Это 30,0 и 10,2 тыс. руб.

Найдем размер интервала: h = (30,0-10,2):5= 3,96 тыс. руб.

Тогда в первую группу будут входить предприятия, размер основных фондов которых составляет от 10,2 тыс. руб. до 10,2+3,96=14,16 тыс. руб. Таких предприятий будет 9. Во вторую группу войдут предприятия, размер основных фондов которых составит от 14,16 тыс. руб. до 14,16+3,96=18,12 тыс. руб. Таких предприятий будет 16. Аналогично найдем число предприятий, входящих в третью, четвертую и пятую группы.

Полученный ряд распределения поместим в таблицу.

Задача 3 . По ряду предприятий легкой промышленности получены следующие данные:

Произведите группировку предприятий по числу рабочих, образуя 6 групп с равными интервалами. Подсчитайте по каждой группе:

1. число предприятий
2. число рабочих
3. объем произведенной продукции за год
4. среднюю фактическую выработку одного рабочего
5. объем основных средств
6. средний размер основных средств одного предприятия
7. среднюю величину произведенной продукции одним предприятием

Результаты расчета оформите в таблицы. Сделайте выводы.

Решение

Для решения выберем наибольшее и наименьшее значения среднесписочного числа рабочих на предприятии. Это 43 и 256.

Найдем размер интервала: h = (256-43):6 = 35,5

Тогда в первую группу будут входить предприятия, среднесписочное число рабочих на которых составляет от 43 до 43+35,5=78,5 человек. Таких предприятий будет 5. Во вторую группу войдут предприятия, среднесписочное число рабочих на которых составит от 78,5 до 78,5+35,5=114 человек. Таких предприятий будет 12. Аналогично найдем число предприятий, входящих в третью, четвертую, пятую и шестую группы.

Полученный ряд распределения поместим в таблицу и вычислим необходимые показатели по каждой группе:

Вывод : Как видно из таблицы, вторая группа предприятий является самой многочисленной. В нее входят 12 предприятий. Самыми малочисленными являются пятая и шестая группы (по два предприятия). Это самые крупные предприятия (по числу рабочих).

Поскольку вторая группа самая многочисленная, объем произведенной продукции за год предприятиями этой группы и объем основных средств значительно выше других. Вместе с тем средняя фактическая выработка одного рабочего на предприятиях этой группы наибольшей не является. Здесь лидируют предприятия четвертой группы. На эту группу приходится и довольно большой объем основных средств.

В заключении отметим, что средний размер основных средств и средняя величина произведенной продукции одного предприятия прямо пропорциональны размерам предприятия (по числу рабочих).

Лабораторная работа №1

По математической статистике

Тема: Первичная обработка экспериментальных данных

3. Оценка в баллах. 1

5. Контрольные вопросы.. 2

6. Методика выполнения лабораторной работы.. 3

Цель работы

Приобретение навыков первичной обработки эмпирических данных методами математической статистики.

На основе совокупности опытных данных выполнить следующие задания:

Задание 1. Построить интервальный вариационный ряд распределения.

Задание 2. Построить гистограмму частот интервального вариационного ряда.

Задание 3. Составить эмпирическую функцию распределения и построить график.

а) моду и медиану;

б) условные начальные моменты;

в) выборочную среднюю;

г) выборочную дисперсию, исправленную дисперсию генеральной совокупности, исправленное среднее квадратичное отклонение;

д) коэффициент вариации;

е) асимметрию;

ж) эксцесс;

Задание 5. Определить границы истинных значений числовых характеристик, изучаемой случайной величины с заданной надёжностью.

Задание 6. Содержательная интерпретация результатов первичной обработки по условию задачи.

Оценка в баллах

Задания 1-5 6 баллов

Задание 6 2 балла

Защита лабораторной работы (устное собеседование по контрольным вопросам и лабораторной работе) - 2 балла

Работа сдается в письменной форме на листах формата А4 и включает:

1) Титульный лист (Приложение 1)

2) Исходные данные.

3) Представление работы по указанному образцу.

4) Результаты расчетов (выполненные вручную и/или с помощью MS Excel) в указанном порядке.

5) Выводы - содержательная интерпретация результатов первичной обработки по условию задачи.

6) Устное собеседование по работе и контрольным вопросам.



5. Контрольные вопросы


Методика выполнения лабораторной работы

Задание 1. Построить интервальный вариационный ряд распределения

Для того, чтобы статистические данные представить в виде вариационного ряда с равноотстоящими вариантами необходимо:

1.В исходной таблице данных найти наименьшее и наибольшее значения.

2.Определить размах варьирования :

3. Определить длину интервала h, если в выборке до 1000 данных, используют формулу: , где n – объем выборки – количество данных в выборке; для вычислений берут lgn).

Вычисленное отношение округляют до удобногоцелого значения .

4. Определить начало первого интервала для четного числа интервалов рекомендуют брать величину ; а для нечетного числа интервалов .

5. Записать интервалы группировок и расположить их в порядке возрастания границ

, ,………., ,

где - нижняя граница первого интервала. За берется удобное число не большее , верхняя граница последнего интервала должна быть не меньше . Рекомендуется, чтобы интервалы содержали в себе исходные значения случайной величины и выделять от 5 до 20 интервалов.

6. Записать исходные данные по интервалам группировок, т.е. подсчитать по исходной таблице число значений случайной величины, попадающих в указанные интервалы. Если некоторые значения совпадают с границами интервалов, то их относят либо только к предыдущему, либо только к последующему интервалу.

Замечание 1. Интервалы необязательно брать равными по длине. На участках, где значения располагаются гуще, удобнее брать более мелкие короткие интервалы, а там где реже - более крупные.

Замечание 2 .Если для некоторых значений получены “нулевые”, либо малые значения частот , то необходимо перегруппировать данные, укрупняя интервалы (увеличивая шаг ).