Рассчитать сколько нужно радиаторов отопления. Расчёт количества секций радиатора отопления: рекомендации по подготовке данных для расчета, формулы и калькулятор. Как рассчитать мощность батарей отопления

Уважаемые пользователи нашего ресурса! На нашем сайте Вы имеете возможность самостоятельно подобрать радиатор. Это значит, что Вы можете сами рассчитать количество радиаторов, необходимое для установки в каждое помещение. Чтобы произвести данный расчет иметь в распоряжении определенную расчетную информацию, только тогда можно подобрать радиаторы с большей точностью. Информация, необходимая для определения количества секций радиаторов: Основным из них является тепловая мощность радиатора (теплоотдача) - это величина, которая показывает какое количество тепловой энергии отдает радиатор в определенную единицу времени. Тепловая мощность выражается в ваттах. У каждого радиатора такая величина определена заводом-изготовителем. Переходим к расчетной части. Из сказанного выше приходим к выводу, что необходимо определить тепловую мощность, необходимую для обогрева конкретного помещения, для этого нам, как раз, и потребуются размеры помещения. Следующий шаг. Запаситесь терпением, найдите карандаш, бумагу, рулетку и подготовьте для правильного подбора радиаторов следующую информацию: тип окон, качество теплоизоляции, площадь окон и пола, средняя температура самой холодной недели в году, тип помещения над рассчитываемым, размеры помещения. Итак, если Вы собрали всю необходимую информацию, приступим.

Подбор радиатора отопления (расчет количества секций)

Теперь нужно определиться какие радиаторы Вы желаете установить: алюминиевые радиаторы (экструзионные и литые под давлением); стальные радиаторы (трубчатые, панельные); биметаллические радиаторы (экструзионные и литые под давлением); чугунные радиаторы (трубчатые). Итак, если Вы уже остановили свой выбор на радиаторах определенного типа, то следующий вопрос, который возникает - это как выбрать радиатор из уже имеющегося многообразия, удовлетворяющий конкретным требованиям. О том как выбрать отопительный радиатор Вы можете узнать в разделе "Статьи" - "Статьи о радиаторах отопления"

Расчет радиаторов нужно выполнять правильно, иначе малое их количество не сможет достаточно прогреть помещение, а большое, наоборот, создаст некомфортные условия пребывания, и придется постоянно открывать окна. Известны разные методики расчета. На их выбор влияет материал батарей, климатические условия, обустройство дома.

Расчет количества батарей на 1 кв. м

Площадь каждой комнаты, где будут установлены радиаторы, можно посмотреть в документах на недвижимость или измерить самостоятельно. Потребность тепла для каждой комнаты можно узнать в строительных нормах, где приведено, что для отопления 1м2 в определенной зоне проживания потребуется:
  • для суровых климатических условий (температура достигает ниже -60 град.) – 150-200 Вт;
  • для средней полосы – 60-100 Вт.
Чтобы рассчитать, нужно умножить площадь (P) на значение потребности тепла. Учитывая эти данные, в качестве примера, приведем расчет для климата средней полосы. Чтобы достаточно отопить комнату в 16 кв. м, нужно применить расчет:

16 х 100 = 1600 Вт

Взято самое большее значение потребляемой мощности, так как погода переменчива, и лучше предусмотреть небольшой запас мощности, чтобы потом не мерзнуть зимой.


Далее рассчитывается количество секций батарей (N) – полученное значение делиться на тепло, которое выделяет одна секция. Принимается, что одна секция выделяет 170 Вт, исходя из этого, проводится расчет:

1600 / 170 = 9,4

Лучше округлить в большую сторону – 10 штук. Но для некоторых комнат целесообразней округлять в меньшую сторону, например, для кухни, в которой есть дополнительные источники тепла. Тогда будет 9 секций.

Расчеты можно провести по другой формуле, которая при этом аналогична выше представленным расчетам:

N = S / P * 100, где

  • N – количество секций;
  • S – площадь комнаты;
  • P – теплоотдача одной секции.
Так, N = 16 / 170 * 100, отсюда N = 9,4.

Выбор точного количества секций биметаллических батарей

Они бывают нескольких видов, каждый из них имеет свою мощность. Минимальное выделение тепла достигает – 120 Вт, максимальное – 190 Вт. При расчете количества секций нужно учитывать необходимое потребление тепла в зависимости от места расположения дома, а также с учетом теплопотерь:
  • Сквозняки, которые происходят из-за некачественно выполненных оконных проемов и профиля окон, щелей в стенах.
  • Растраты тепла по пути следования теплоносителя от одной батареи к другой.
  • Угловое расположение комнаты.
  • Количества окон в помещении: чем их больше, тем больше теплопотери.
  • Регулярное проветривание комнат зимой также накладывает отпечаток на количество секций.
Для примера, если нужно обогреть комнату в 10 кв. м, расположенную в доме, находящемся в средней климатической полосе, то нужно приобрести батарею с 10 секциями, мощность каждой из них должна быть равна 120 Вт или ее аналог на 6 секций при теплоотдаче в 190 Вт.

Расчет количества радиаторов в частном доме

Если для квартир можно брать усредненные параметры потребляемого тепла, так как они рассчитаны на стандартные габариты комнаты, то в частном строительстве это неправильно. Ведь многие владельцы строят свои дома с высотой потолков, превышающей 2,8 метра, к тому же практически все помещения частного владения получаются угловыми, поэтому для их обогрева потребуется больше мощности.

В таком случае расчеты, основанные на учете площади помещения, не подходят: нужно применять формулу с учетом объема комнаты и делать корректировку, применяя коэффициенты уменьшения или увеличения теплоотдачи.

Значения коэффициентов следующие:

  • 0,2 – на этот показатель умножается полученное конечное число мощности, если в доме установлены многокамерные пластиковые стеклопакеты.
  • 1,15 – если установленный в доме котел работает на пределе своей мощности. В этом случае каждые 10 градусов нагреваемого теплоносителя понижают мощность радиаторов на 15%.
  • 1,8 – коэффициент увеличения, который нужно применить, если комната угловая, и в ней присутствует более одного окна.
Для расчета мощности радиаторов в частном доме применяется следующая формула:

Р = V х 41, где

  • V – объем помещения;
  • 41 – усредненная мощность, необходимая для обогрева 1 кв. м частного дома.
Пример расчета

Если имеется комната в 20 кв. м (4х5 м – длина стен) с высотой потолков 3 метра, то ее объем легко рассчитать:

20 х 3 = 60 Вт

Полученное значение умножается на принятую по нормам мощность:

60 х 41 = 2460 Вт – столько требуется тепла, чтобы отопить рассматриваемую площадь.

Расчет количества радиаторов сводится к следующему (если учесть, что одна секция радиатора в среднем выделяет 160 Вт, а точные их данные зависят от материала, из которого изготовлены батареи):

2460 / 160 = 15,4 штуки

Примем, что всего нужно 16 секций, то есть нужно приобрести 4 радиатора по 4 секции на каждую стену или 2 по 8 секций. При этом не нужно забывать о коэффициентах корректировки.

Расчет отдачи тепла одного алюминиевого радиатора (видео)

В видео вы узнаете, как рассчитать теплоотдачи одной секции батареи из алюминия при разных параметрах входящего и выходящего теплоносителя.


Одна секция алюминиевого радиатора имеет мощность 199 Ватт, но это при условии, что заявленный перепад температур в 70 град. будет соблюдаться. Это означает, что на входе температура теплоносителя составляет 110 град., а на выходе 70 град. Помещение при таком перепаде должно прогреваться до 20 град. Обозначается эта разница температур DT.

Некоторые производители радиаторов предоставляют вместе со своим изделием таблицу пересчета теплоотдачи и коэффициент. Ее величина плавающая: чем больше температура теплоносителя, тем больше показатель теплоотдачи.


В качестве примера, можно рассчитать этот параметр при следующих данных:
  • Температура теплоносителя на входе в радиатор – 85 град.;
  • Остывание воды при выходе из радиатора – 63 град.;
  • Обогрев помещения – 23 град.
Нужно сложить между собой два первых значения, разделить их на 2 и вычесть температуру помещения, наглядно это происходит так:

(85 + 63) / 2 – 23 = 52

Полученное число равняется DT, по предлагаемой таблице можно установить, что при нем коэффициент равняется 0,68. Учитывая это можно определить теплоотдачу одной секции:

199 х 0,68 = 135 Вт


Затем, зная теплопотери в каждом помещении, можно рассчитать, сколько всего нужно секций радиаторов для установки в определенную комнату. Даже если по расчетам получилась одна секция, нужно устанавливать минимум 3, иначе вся система отопления будет выглядеть нелепо и достаточно не обогреет площадь.

Расчет количества радиаторов всегда актуально. Тем, кто строит частный дом, это особенно важно. Владельцам квартир, которые захотели поменять радиаторы, также стоит знать, как можно легко рассчитать количество секций на новых моделях радиаторов.

Каждый человек хотя бы раз в жизни сталкивается с проблемой организации отопления своего жилища. Это может быть связано со строительством дома, ремонтом приобретенной квартиры или необходимостью исправления уже существующей системы отопления.

Технология пайки ПВХ-труб позволила отказаться от коммуникаций, выполненных с использованием стальных конструкций. Эта технология также сделала возможным отказ от трудоемких процессов газосварки, позволила выполнять многие работы по водоснабжению, отоплению и водоотведению своими силами.

Если возникает необходимость выполнить работы по отоплению помещения своими руками, встает вопрос о том, как произвести расчет радиаторов отопления. Для этого потребуется решение сложного комплекса задач, среди которых выбор схемы отопления, определение подходящего материала радиатора, оценка помещения и многие другие факторы, влияющие на конечный результат расчета.

Верность принятых решений будет ясна при начале эксплуатации системы в отопительный период. Как избежать ненужных затрат и обеспечить комфорт в помещении в холодное время года, а также какие факторы нужно учесть, проектируя систему отопления, рекомендуется выяснить заблаговременно.

Как рассчитать количество радиаторов

Расчет количества радиаторов отопления можно сделать тремя способами:

  1. Определение необходимой системы отопления исходя из площади отапливаемого помещения.
  2. Расчет нужных секций радиатора исходя из объема помещения.
  3. Наиболее сложный, но в тоже время самый точный метод расчета, который учитывает максимальное число факторов, влияющих на создание комфортной температуры в помещении.

Прежде чем остановиться на вышеприведенных способах расчета, нельзя обойти вниманием и сами радиаторы. Их способность передать тепловую энергию носителя окружающей среде, а также мощность, зависят от материала, из которого они изготовлены. Кроме того, радиаторы отличаются по стойкости (способности противостоять коррозии), имеют разное максимально допустимое рабочее давление и массу.

Так как батарея состоит из набора секций, необходимо учитывать виды материалов, из которых изготавливают радиаторы, знать их положительные и отрицательные качества. От выбранного материала будет зависеть, сколько секций батареи потребуется установить. Сейчас можно выделить 4 вида радиаторов отопления, представленных на рынке. Это чугунные, алюминиевые, стальные и биметаллические конструкции.

Чугунные радиаторы прекрасно аккумулируют тепло, выдерживают высокое давление и не имеют ограничений по виду теплоносителя. Но при этом они отличаются большим весом и требуют особого внимания к крепежу. Стальные радиаторы имеют меньшую массу по сравнению с чугуном, работают на любом давлении и являются самым бюджетным вариантом, но коэффициент теплоотдачи у них ниже, чем у всех остальных батарей.

Алюминиевые радиаторы прекрасно отдают тепло, они легкие, имеют приемлемую цену, но плохо переносят высокое давление отопительной сети. Биметаллические радиаторы взяли лучшее от стальных и алюминиевых радиаторов, но цену имеют самую высокую среди представленных вариантов.

Считается, что мощность одной секции чугунной батареи равна 145 Вт, алюминиевой — 190 Вт, биметаллической — 185 Вт и стальной — 85 Вт.

Большое значение имеет способ, при помощи которого конструкция подключена к отопительной сети. Расчет мощности радиаторов отопления напрямую зависит от способов подачи и отвода теплоносителя, и этот фактор тоже влияет на количество секций радиатора отопления, необходимых для нормального обогрева заданного помещения.

Расчет на площадь

Этот метод можно назвать самым простым, усредненным способом расчета нужного числа батарей в помещении. Он позволяет быстро определить нужное число секций радиатора отопления.

Расчет по площади подразумевает, что в стандартном жилом помещении, расположенном в средней климатической зоне, на 1 м² площади необходимо 100 Вт тепловой мощности. Путем перемножения площади помещения на необходимую теплоотдачу получаем общую мощность батареи, которую нужно установить в этой комнате.

Определившись с материалом, из которого будет изготовлена конструкция, и зная мощность одной секции, можно легко вычислить необходимое количество. К примеру, для отопления помещения площадью 24 м² нам понадобится: 24 м² х 100 Вт/190 Вт (мощность одной алюминиевой секции) = 2400/190 = 12,63 секции алюминиевого радиатора. Округление всегда проводим в большую сторону и получаем 13 секций в батарее.

Производитель указывает вес одной секции, объем теплоносителя в ней и линейные параметры. Из этих данных определяются габаритные размеры самой батареи и ее масса, но при этом нужно приплюсовать вес рабочего теплоносителя.

Необходимо учитывать, что расчет мощности на квадратный метр помещения не отличается высокой точностью. Разная высота потолков подразумевает и разный объем воздуха, который потребуется нагреть. Чтобы учесть эту величину, лучше использовать следующий метод расчета.

Расчет по объему помещения

Этот метод учитывает большее число параметров, но в результате тоже дает усредненные показатели. Он строится на норме СНиПа, согласно которой на обогрев 1 м³ помещения необходим 41 Вт тепловой мощности батареи отопления.

Перемножив высоту потолков комнаты на ее площадь и полученную величину умножив на 41 Вт, можно получить требуемую мощность батареи. После выполнения подсчетов согласно вышеприведенной формуле и выбора материала, из которого изготовлена секция радиатора, определяют нужное значение.

Пример расчета

Перечисленные методы не учитывают индивидуальные особенности каждого дома, климатическую зону, способ монтажа батареи и другие важные факторы, которые могут существенно повлиять на конечный результат. Если необходимо точно определить мощность радиатора отопления, требуется учесть поправочные коэффициенты, которые содержат в себе эти факторы. Для выполнения расчета рекомендуется использовать следующие поправочные коэффициенты:

  1. А1 — учитывает теплопотери через окна помещения. Величина коэффициента А1 колеблется в пределах от 1,27 до 0,85, где первое значение соответствует стандартному окну с двумя стеклами, а 0,85 — пластиковому окну с тройным стеклопакетом.
  2. А2 — учитывает теплопотери через стены помещения и зависит от материалов стен. А2 принимаем равным 1,27 при низкой теплоизоляции и 0,85 при хорошей. Единица будет соответствовать средней степени потери тепла через стены.
  3. А3 — учитывает климатическую зону и низкую температуру окружающей среды. Этот коэффициент находится в пределах 1,5 (зимы с температурами -40 °С и ниже) и 0,7 (температура зимой не падает ниже -10 °С).
  4. А4 — учитывает процент остекления относительно общей площади всех наружных стен помещения. Значения этого коэффициента лежат в диапазоне от 1,2 (50% окон) до 0,8 (окна занимают 10% площади внешних стен).
  5. А5 — эта величина учитывает число наружных стен в одном помещении. 1,1 — одна стена и 1,4 — четыре стены помещения, которые контактируют с открытым пространством.
  6. А6 — позволяет учесть температуру помещения, находящегося сверху. Если величина 1,0 — это неотапливаемое помещение, а 0,8 — хорошо отапливаемая жилая квартира.
  7. А7 — т. к. общая формула будет базироваться на расчете необходимых секций радиатора на единицу площади, то данный коэффициент учитывает высоту отапливаемого помещения. При высоте потолков 2,5 м принимаем поправочный коэффициент, равный 1,0. При высоте в 3,2 м он равен 1,1, а при высоте свыше 4 м — 1,2 и более.

Конечная формула точного расчета тепловой мощности, необходимой для обогрева помещения, будет выглядеть так: P= S*100*A1*A2*A3*A4*A5*A6*A7, где

  • P — тепло в Вт, необходимое для обогрева помещения;
  • 100 — число Вт на единицу площади (Вт/м²),
  • А1-А7 — поправочные коэффициенты.

Расчет мощности батарей в комнате панельного многоэтажного дома в средней полосе РФ при площади 20 м² и одном стандартном пластиковом окне будет выглядеть так: Р=20 *100*1*1,15*1*1*1,1*0,8*1=2024 Вт.

Если в данную комнату планируется устанавливать чугунные радиаторы, то 2024 Вт / 145 Вт = 13,9 шт., округляем до 14 шт.

Возможна ли экономия

Организация отопления в доме — дело затратное, но сэкономить при расчете секций возможно. Вышеприведенные методы используют усредненные данные по мощности одной секции. Большой ассортимент радиаторов отопления от разных производителей и разница в типоразмерах могут сильно повлиять на нужное количество батарей. Для этого надо уточнить в магазине паспортную мощность нужного образца и использовать в расчете указанные данные.

Существенная экономия возможна при выборе рационального подключения батареи к системе отопления. Указанные паспортные величины подразумевают КПД собранной батареи 100%, а в реальности разные виды подключения могут существенно снизить этот показатель.

При учете максимально точных данных по отапливаемому помещению и характеристик от производителя по указанному виду батареи можно рационально использовать финансовые вложения, избежав приобретения лишних секций радиатора.

Сегодня потребительский рынок наполнен множеством моделей отопительных устройств, которые различаются по габаритам и показателям мощности. Среди них стоит выделить стальные радиаторы. Данные приборы довольно легкие, имеют привлекательный внешний вид и обладают хорошей теплоотдачей. Перед выбором модели необходимо произвести расчет мощности стальных радиаторов отопления по таблице.

Разновидности

Рассмотрим стальные радиаторы панельного типа, которые различаются по габаритам и степени мощности. Устройства могут состоять из одной, двух или трех панелей. Другой важный элемент конструкции – оребрение (гофрированные металлические пластины). Чтобы получить определенные показатели тепловой отдачи, в конструкции устройств используется несколько комбинаций панелей и оребрения. Перед выбором наиболее подходящего устройства для качественного отопления помещения, необходимо ознакомиться с каждой разновидностью.

Стальные панельные батареи представлены следующими типами:

  • Тип 10. Здесь устройство оснащено только одной панелью. Такие радиаторы имеют легкий вес и самую низкую мощность.

  • Тип 11. Состоят из одной панели и пластины оребрения. Батареи обладают чуть большим весом и габаритами, чем предыдущий тип, отличаются повышенными параметрами тепловой мощности.

  • Тип 21. В конструкции радиатора две панели, между которыми располагается гофрированная металлическая пластина.
  • Тип 22. Батарея состоит из двух панелей, а также двух пластин оребрения. По размерам устройство схоже с радиаторами 21-го типа, однако, по сравнению с ними, обладают большей тепловой мощностью.

  • Тип 33. Конструкция состоит из трех панелей. Данный класс – самый мощный по тепловой отдаче и самый большой по размерам. В его конструкции к трем панелям присоединены 3 пластины оребрения (отсюда и цифровое обозначение типа — 33).

Каждый из представленных типов может различаться по длине прибора и его высоте. На основании этих показателей и формируется тепловая мощность устройства. Самостоятельно рассчитать данный параметр невозможно. Однако каждая модель панельного радиатора проходит соответствующие испытания производителем, поэтому все результаты заносятся в специальные таблицы. По ним очень удобно подобрать подходящую батарею для отопления различных типов помещений.

Определение мощности

Для точного расчета тепловой мощности необходимо отталкиваться от показателей тепловых потерь помещения, в котором планируется установить эти устройства.

Для обычных квартир можно руководствоваться СНиПом (Строительными нормами и правилами), в которых прописаны объемы тепла из расчета на 1м 3 площади:

На основании данных норм можно выявить мощность стальных панельных радиаторов отопления.

В качестве примера, возьмем комнату в стандартном панельном доме с габаритами 3,2*3,5м и высотой потолков в 3 метра. Первым делом определим объем помещения: 3,2*3,5*3=33,6м 3 . Далее обратимся к нормам СНиП и найдем числовое значение, которое соответствует нашему примеру: 33,6*41=1377,6Вт. В результате, мы получили количество тепла, необходимое для обогрева комнаты.

Дополнительные параметры

Нормативные предписания СНиПа составлены для условий средней климатической зоны.

Чтобы произвести расчет в областях с более холодными зимними температурами, нужно скорректировать показатели при помощи коэффициэнтов:

  • до -10° C – 0,7;
  • -15° C – 0,9;
  • -20° C - 1,1;
  • -25° C - 1,3;
  • -30° C - 1,5.

При расчете тепловых потерь, нужно брать во внимание и количество стен, которые выходят наружу. Чем их больше, тем выше будут показатели теплопотерь помещения. К примеру, если в комнате одна наружная стена – применяем коэффициент 1,1. Если мы имеем две или три наружные стены, то коэффициент будет 1,2 и 1,3 соответственно.

Рассмотрим пример. Допустим, в зимний период в регионе держится средняя температура -25° C, а в помещении расположены две наружных стены. Из расчетов мы получим: 1378 Вт*1,3*1,2=2149,68 Вт. Итоговый результат округляем до 2150 Вт. Дополнительно необходимо учитывать, какие помещения расположены на нижнем и верхнем этаже, из чего сделана кровля, каким материалом утеплялись стены.

Расчет радиаторов Kermi

Прежде чем проводить расчет тепловой мощности, следует определиться с фирмой-производителем устройства, которое будет установлено в помещении. Очевидно, что лучшие рекомендации заслуженно имеют лидеры данной отрасли. Обратимся к таблице известного немецкого производителя Kermi, на основе которой и проведем необходимые расчеты.

Для примера возьмем одну из новейших моделей — ThermX2Plan. По таблице можно увидеть, что параметры мощности прописаны для каждой модели Kermi, поэтому необходимо просто найти нужное устройство из списка. В области отопления не требуется, чтобы показатели полностью совпадали, поэтому лучше взять значение, которое немного больше рассчитанного. Так у вас будет необходимый запас на периоды резкого похолодания.

Все подходящие показатели отмечены в таблице красными квадратами. Допустим, для нас наиболее оптимальная высота радиатора – 505 мм (прописана в верхней части таблицы). Самый привлекательный вариант – устройства 33 типа с длиной 1005 мм. Если требуются более короткие приборы, следует остановиться на моделях 605 мм высотой.

Пересчет мощности исходя из температурного режима

Однако данные в этой таблице прописаны для показателей 75/65/20, где 75° C – температура провода, 65° C – температура отвода, а 20° C – температура, которая поддерживается в помещении. На основе этих значений производится расчет (75+65)/2-20=50° C, в результате которого мы получаем дельту температур. В том случае, если у вас иные системные параметры, потребуется перерасчет. Для этой цели в Kermi подготовили специальную таблицу, в которой указаны коэффициенты для корректировки. С ее помощью можно осуществить более точный расчет мощности стальных радиаторов отопления по таблице, что позволит подобрать наиболее оптимальное устройство для обогрева конкретного помещения.

Рассмотрим низкотемпературную систему, показатели которой составляют 60/50/22, где 60° C – температура провода, 50° C – температура отвода, а 22° C – температура, поддерживаемая в помещении. Вычисляем дельту температур по уже известной формуле: (60+50)/2-22=33° C. Затем смотрим в таблицу и находим температурные показатели проводимой/отводимой воды. В клетке с поддерживаемой температурой помещения находим нужный коэффициент 1,73 (в таблицах отмечается зеленым цветом).

Далее берем количество тепловых потерь помещения и умножаем его на коэффициент: 2150 Вт*1,73=3719,5 Вт. После этого возвращаемся к таблице мощностей, чтобы посмотреть подходящие варианты. В таком случае выбор будет скромнее, поскольку для качественного обогрева потребуются гораздо более мощные радиаторы.

Заключение

Как видим, правильный расчет мощности для стальных панельных радиаторов невозможен без знания определенных показателей. Обязательно необходимо выяснить теплопотери помещения, определиться с фирмой-производителем батареи, иметь представление о температуре проводимой/отводимой воды, а также о температуре, которая поддерживается в помещении. На основе этих показателей можно легко определить подходящие модели батарей.

Комфортные условия жизни в зимнее время всецело зависят от достаточности снабжения теплом жилых помещений. Если это новостройка, например, на дачном или приусадебном участке, то необходимо знать, как рассчитать радиаторы отопления для частного дома.

Все операции сводятся к вычислению количества секций радиаторов и подчиняются четкому алгоритму, поэтому нет нужды быть квалифицированным специалистом – каждый человек сможет проделать довольно точное теплотехническое вычисление своего жилища.

Почему необходим точный расчет

Теплоотдача приборов теплоснабжения зависит от материала изготовления и площади отдельных секций. От правильных вычислений зависит не только тепло в доме, но также сбалансированность и экономичность системы в целом: недостаточное число установленных секций радиаторов не обеспечит должное тепло в комнате, а излишнее количество секций ударит по карману.

Для вычислений необходимо определиться с типом батарей и системы теплоснабжения. К примеру, расчет алюминиевых радиаторов теплоснабжения для частного дома отличается от других элементов системы. Радиаторы бывают чугунными, стальными, алюминиевыми, алюминиевыми анодированными и биметаллическими:

  • Наиболее известны чугунные батареи, так называемые «гармошки». Они долговечны, стойки к коррозии, обладают мощностью секций 160 Вт при высоте 50 см и температуре воды 70 градусов. Существенный недостаток этих приборов – неприглядный внешний вид, но современные производители выпускают гладкие и достаточно эстетичные чугунные батареи, сохраняя все преимущества материала и делая их конкурентоспособными.

  • Алюминиевые радиаторы по тепловой мощности превосходят чугунные изделия, они прочны, обладают легким собственным весом, что дает преимущество при монтаже. Единственный недостаток подверженность к кислородной коррозии. Для его устранения взято на вооружение производство анодированных радиаторов из алюминия.

  • Стальные приборы не обладают достаточной тепловой мощностью, не подлежат разборке и увеличению секций при необходимости, подвержены коррозии, поэтому не пользуются популярностью.

  • Биметаллические радиаторы отопления – это сочетание стальных и алюминиевых деталей. Теплоносителями и крепежными деталями в них являются стальные трубы и резьбовые соединения, покрытые алюминиевым кожухом. Недостаток – довольно высокая стоимость.

По типу системы теплоснабжения различают однотрубное и двухтрубное подключение элементов отопления. В многоэтажных жилых домах в основном применена однотрубная схема системы теплоснабжения. Недостатком здесь является довольно значительная разница температуры входящей и исходящей воды на разных концах системы, что свидетельствует о неравномерности распределения тепловой энергии по приборам батареям.

Для равномерного распределения тепловой энергии в частных домах можно применять двухтрубную систему теплоснабжения, когда горячая вода подается по одной трубе, а охлажденная выводится по другой.

Кроме этого, точное вычисление количества батарей отопления в частном доме зависит от схемы подключения приборов, высоты потолка, площади оконных проемов, количества наружных стен, типа помещения, закрытости приборов декоративными панелями и от других факторов.

Помните! Необходимо правильно рассчитать требуемое число радиаторов отопления в частном доме, чтобы гарантировать достаточное количество тепла в помещении и обеспечить экономию финансовых средств.

Виды расчетов отопления для частного дома

Вид расчета радиаторов отопления для частного дома зависит от поставленной цели, то есть насколько точно вы хотите рассчитать батареи отопления для частного дома. Различают упрощенный и точный методы, а также по площади и по объему рассчитываемого пространства.

По упрощенному или предварительному методу подсчеты сводятся к умножению площади помещения на 100 Вт: стандартную величину достаточной тепловой энергии на метр в квадрате, при этом формула подсчета примет следующий вид:

Q = S*100, где

Q – потребная мощность тепла;

S – расчетная площадь комнаты;

Вычисление нужного числа секций разборных радиаторов ведется по формуле:

N = Q/Qx, где

N – требуемое количество секций;

Qx – удельная мощность секции по паспорту изделия.

Так как эти формулы для высоты комнаты – 2,7 м, для других величин требуется вводить коэффициенты поправки. Вычисления сводятся к определению количества тепла на 1 м3 объема помещения. Упрощенная формула выглядит так:

Q = S*h*Qy, где

H – высота комнаты от пола до потолка;

Qy – средний показатель тепловой мощности в зависимости от вида ограждения, для кирпичных стен равен 34 Вт/м3, для панельных стен – 41 Вт/м3.

Эти формулы не могут гарантировать комфортные условия. Поэтому требуются точные вычисления, учитывающие все сопутствующие особенности здания.

Точный расчет приборов отопления

Наиболее точная формула необходимой тепловой мощности выглядит следующим образом:

Q = S*100*(K1*К2*…*Kn-1*Kn), где

K1, K2 … Kn – коэффициенты, зависящие от различных условий.

Какие условия влияют на микроклимат в помещении? Для точного расчета учитывается до 10 показателей.

K1 – показатель, зависящий от числа наружных стен, чем больше поверхности соприкасается с внешней средой, тем больше потери тепловой энергии:

  • при одной наружной стене показатель равен единице;
  • если две наружные стены — 1,2;
  • если три внешние стены — 1,3;
  • если все четыре стены наружные (т.е. здание однокомнатное) — 1,4.

К2 – учитывает ориентацию здания: считается, что комнаты хорошо прогреваются, если расположены в южном и западном направлении, здесь К2 = 1,0, и наоборот недостаточно – когда окна выходят на север или восток – К2 = 1,1. С этим можно поспорить: в восточном направлении помещение все же прогревается по утрам, поэтому целесообразнее применить коэффициент 1,05.

К3 – показатель утепления наружных стен, зависит от материала и степени термоизоляции:

  • для наружных стен в два кирпича, а также при использовании утеплителя для не утепленных стен показатель равен единице;
  • для неутепленных стен – К3 = 1,27;
  • при утеплении жилища на основании теплотехнических расчетов по СНиП – К3 = 0,85.

К4 – коэффициент, учитывающий самые низкие температуры холодного периода года для конкретного региона:

  • до 35 °С К4 = 1,5;
  • от 25 °С до 35 °С К4 = 1,3;
  • до 20 °С К4 = 1,1;
  • до 15 °С К4 = 0,9;
  • до 10 °С К4 = 0,7.

К5 – зависит от высоты помещения от пола до потолка. В качестве стандартной высоты принята h = 2,7 м с показателем равной единице. Если высота комнаты отличается от стандартной, вводится поправочный коэффициент:

  • 2,8-3,0 м – К5 = 1,05;
  • 3,1-3,5 м – К5 = 1,1;
  • 3,6-4,0 м – К5 = 1,15;
  • более 4 м – К5 = 1,2.

К6 – показатель, учитывающий характер помещения, находящегося сверху. Полы жилых зданий всегда утепляются, комнаты сверху могут быть отапливаемыми или холодными, а это неизбежно повлияет на микроклимат рассчитываемого пространства:

  • для холодного чердака, а также если помещение сверху не отапливается, показатель будет равен единице;
  • при утепленном чердаке или кровле – К6 = 0,9;
  • если сверху расположено отапливаемая комната – К6 = 0,8.

К7 – показатель, учитывающий тип оконных блоков. Конструкция окна существенным образом влияет на потери тепла. При этом величина коэффициента К7 определяется следующим образом:

  • так как окна из дерева с двойным остеклением недостаточно защищают комнату, показатель самый высокий К7 = 1,27;
  • стеклопакеты обладают отличными свойствами защиты от теплопотерь, при однокамерном стеклопакете из двух стекол К7 равен единице;
  • улучшенный однокамерный стеклопакет с аргоновым заполнением или двойной стеклопакет, состоящий из трех стекол К7 = 0,85.

К8 – коэффициент, зависящий от площади остекления оконных проемов. Теплопотери зависят от количества и площади установленных окон. Соотношение площади окон к площади комнаты должно быть урегулировано таким образом, чтобы коэффициент имел низшие значения. В зависимости от отношения площади окон к площади помещения определяется искомый показатель:

  • менее 0,1 – К8 = 0,8;
  • от 0,11 до 0,2 – К8 = 0,9;
  • от 0,21 до 0,3 – К8 = 1,0;
  • от 0,31 до 0,4 – К8 = 1,1;
  • от 0,41 до 0,5 – К8 = 1,2.

К9 – учитывает схему подключения приборов. В зависимости от способа подключения горячей и вывода холодной воды зависит отдача тепла. Этот фактор необходимо учитывать при установке и определении требуемой площади приборов теплоснабжения. С учетом схемы подключения:

  • при диагональном расположении труб подача горячей воды осуществляется сверху, обратка – снизу с другой стороны батареи, а показатель равен единице;
  • при подключении подачи и обратки с одной стороны и сверху, и снизу одной секции К9 = 1,03;
  • примыкание труб с двух сторон подразумевает и подачу, и обратку снизу, при этом коэффициент К9 = 1,13;
  • вариант диагонального подключения, когда подача производится снизу, обратка сверху К9 = 1,25;
  • вариант одностороннего подключения с подачей снизу, обраткой сверху и одностороннее нижнее подключение К9 = 1,28.

К10 – коэффициент, зависящий от степени закрытости приборов декорирующими панелями. Открытость приборов для свободного обмена теплом с пространством помещения имеет немаловажное значение, так как создание искусственных барьеров снижает теплоотдачу батарей.

Имеющиеся или искусственно созданные преграды могут изрядно понизить отдачу батареи из-за ухудшения обмена теплом с комнатой. В зависимости от этих условий коэффициент равен:

  • при открытом расположении радиатора на стене со всех сторон 0,9;
  • если прибор прикрыт сверху единице;
  • когда радиаторы прикрыты сверху ниши стены1,07;
  • если прибор прикрыт подоконником и декоративным элементом 1,12;
  • когда радиаторы полностью прикрыты декоративным кожухом 1,2.

Кроме этого, существуют специальные нормы расположения приборов отопления, которые необходимо соблюдать. То есть батарею располагать не менее, чем на:

  • 10 см от низа подоконника;
  • 12 см от пола;
  • 2 см от поверхности наружной стены.

Подставляя все необходимые показатели, можно получить достаточно точное значение требуемой тепловой мощности помещения. Путем разделения полученных результатов на паспортные данные отдачи тепла одной секции выбранного прибора и, округлив до целого числа, получаем количество требуемых секций. Теперь можно, не опасаясь последствий, подобрать и установить необходимое оборудование с нужной тепловой отдачей.

Способы упрощения расчетов

Несмотря на кажущуюся простоту формулы, на самом деле практический расчет не так прост, особенно если количество рассчитываемых комнат велико. Упростить расчеты поможет применение специальных калькуляторов, размещаемых на сайтах некоторых производителей. Достаточно ввести все необходимые данные в соответствующие поля, после чего можно получить точный результат. Можно воспользоваться и табличным методом, так как алгоритм вычисления достаточно прост и однообразен.