Физические характеристики и свойства одного из самых твердых металлов — титана. Титановые сплавы. Основные характеристики

В периодической системе химический элемент титан обозначается, как Ti (Titanium) и располагается в побочной подгруппе IV группы, в 4 периоде под атомным номером 22. Это серебристо-белый твёрдый металл, который входит в состав большого количества минералов. Купить титан вы можете на нашем сайте.

Открыли титан в конце 18 века химики из Англии и Германии Ульям Грегор и Мартин Клапрот, причём независимо друг от друга с шестилетней разницей. Название элементу дал именно Мартин Клапрот в честь древнегреческих персонажей титанов (огромных, сильных, бессмертных существ). Как оказалось, название стало пророческим, но чтобы познакомиться со всеми свойствами титана, человечеству понадобилось ещё больше 150 лет. Только через три десятилетия удалось получить первый образец металла титана. На тот момент времени его практически не использовали из-за хрупкости. В 1925 году после ряда опытов, при помощи йодидного метода химики Ван Аркель и Де Бур добыли чистый титан.

Благодаря ценным свойствам металла, на него сразу же обратили внимание инженеры и конструкторы. Это был настоящий прорыв. В 1940 году Кролль разработал магниетермический способ получения титана из руды. Этот способ актуален и на сегодняшний день.

Физические и механические свойства

Титан является довольно тугоплавким металлом. Температура его плавления составляет 1668±3°С. По этому показателю он уступает таким металлам, как тантал, вольфрам, рений, ниобий, молибден, тантал, цирконий. Титан - это парамагнитный металл. В магнитном поле он не намагничивается, но не выталкивается из него. Изображение 2
Титан обладает низкой плотностью (4,5 г/см³) и высокой прочностью (до 140 кг/мм²). Эти свойства практически не меняются при высоких температурах. Он более чем в 1,5 раза тяжелее алюминия (2,7 г/см³), зато в 1,5 раза легче железа (7,8 г/см³). По механическим свойствам титан намного превосходит эти металлы. По прочности титан и его сплавы располагаются в одном ряду со многими марками легированных сталей.

По стойкости к коррозии титан не уступает платине. Металл обладает отличной устойчивостью в условиях кавитации. Пузырьки воздуха, образующиеся в жидкой среде при активном движении титановой детали, практически не разрушают её.

Это прочный металл, способный сопротивляться разрушению и пластической деформации. Он в 12 раз твёрже алюминия и в 4 раза - меди и железа. Ещё один важный показатель - это предел текучести. С увеличением этого показателя улучшается сопротивление деталей из титана эксплуатационным нагрузкам.

В сплавах с определёнными металлами (особенно с никелем и водородом) титан способен «запоминать» форму изделия, созданную при определённой температуре. Такое изделие потом можно деформировать и оно надолго сохранит это положение. Если же изделие нагреть до температуры, при которой оно было сделано, то изделие примет первоначальную форму. Называют это свойство «памятью».

Теплопроводность титана сравнительно низкая и коэффициент линейного расширения соответственно тоже. Из этого следует, что металл плохо проводит электричество и тепло. Зато при низких температурах он является сверхпроводником электричества, что позволяет ему передавать энергию на значительные расстояния. Также титан обладает высоким электросопротивлением.
Чистый металл титан подлежит различным видам обработки в холодном и горячем состоянии. Его можно вытягивать и делать проволоку, ковать, прокатывать в ленты, листы и фольгу с толщиной до 0,01 мм. Из титана изготавливают такие виды проката: титановая лента , титановая проволока , титановые трубы , титановые втулки , титановый круг , титановый пруток .

Химические свойства

Чистый титан - это химически активный элемент. Благодаря тому, что на его поверхности формируется плотная защитная плёнка, металл обладает высокой устойчивостью к коррозии. Он не подвергается окислению на воздухе, в соленой морской воде, не меняется во многих агрессивных химических средах (например: разбавленная и концентрированная азотная кислота, царская водка). При высоких температурах титан взаимодействует с реагентами намного активнее. На воздухе при температуре 1200°С происходит его воспламенение. Возгораясь, металл даёт яркое свечение. Активная реакция происходит и с азотом, с образованием нитридной плёнки желто-коричневого цвета на поверхности титана.

Реакции с соляной и серной кислотами при комнатной температуре слабые, но при нагреве металл усиленно растворяется. В результате реакции образуются низшие хлориды и моносульфат. Также происходят слабые взаимодействия с фосфорной и азотной кислотами. Металл реагирует с галогенами. Реакция с хлором происходит при 300°С.
Активная реакция с водородом протекает при температуре чуть выше комнатной. Титан активно поглощает водород. 1 г титана может поглотить до 400 см³ водорода. Нагретый металл разлагает двуокись углерода и пары воды. Взаимодействие с парами воды происходит при температуре более 800°С. В результате реакции образуется окисел металла и улетучивается водород. При более высокой температуре горячий титан поглощает углекислый газ и образует карбид и окисел.

Способы получения

Титан является одним из самых распространённых элементов на Земле. Содержание его в недрах планеты по массе составляет 0,57%. Самая большая концентрация металла наблюдается в «базальтовой оболочке» (0,9%), в гранитных породах (0,23%) и в ультраосновных породах (0,03%). Существует около 70 минералов титана, в которых он содержится в виде титановой кислоты или двуокиси. Главные минералы титановых руд это: ильменит, анатаз, рутил, брукит, лопарит, лейкоксен, перовскит и сфен. Основные мировые производители титана - это Великобритания, США, Франция, Япония, Канада, Италия, Испания и Бельгия.
Существует несколько способов получения титана. Все они применяются на практике и вполне эффективны.

1. Магниетермический процесс.

Добывают руду, содержащую титан и перерабатывают его в диоксид, который медленно и при очень высоких температурных значениях подвергают хлорированию. Хлорирование проводят в углеродной среде. Затем хлорид титана, образовавшийся в результате реакции, восстанавливают магнием. Полученный металл нагревают в вакуумном оборудовании при высокой температуре. В результате магний и хлорид магния испаряются, остаётся титан с множеством пор и пустот. Губчатый титан переплавляют для получения качественного металла.

2. Гидридно-кальциевый метод.

Сначала получают гидрид титана, а затем разделяют его на компоненты: титан и водород. Процесс происходит в безвоздушном пространстве при высокой температуре. Образуется оксид кальция, который проходит отмывку слабыми кислотами.
Гидридно-кальциевый и магниетермический методы обычно используются в промышленных масштабах. Эти методы позволяют получить значительное количество титана за небольшой промежуток времени, с минимальными денежными затратами.

3. Электролизный метод.

Хлорид или диоксид титана подвергается воздействию высокой силы тока. В результате происходит разложение соединений.

4. Йодидный метод.

Диоксид титана взаимодействует с парами йода. Далее на титановый йодид воздействуют высокой температурой, в результате чего получается титан. Этот метод является наиболее эффективным, но и самым дорогостоящим. Титан получается очень высокой чистоты без примесей и добавок.

Применение титана

Благодаря хорошим антикоррозионным свойствам титан используют для изготовления химической аппаратуры. Высокая жаростойкость металла и его сплавов способствует применению в современной технике. Сплавы титана - это прекрасный материал для самолётостроения, ракетостроения и судостроения.

Из титана создают памятники. А колокола из этого металла известны необычайным и очень красивым звучанием. Двуокись титана является компонентом некоторых лекарственных препаратов, например: мази против кожных заболеваний. Также большим спросом пользуются соединения металла с никелем, алюминием и углеродом.

Титан и его сплавы нашли применение в таких сферах, как химическая и пищевая промышленность, цветная металлургия, электроника, ядерная техника, энергомашиностроение, гальванотехника. Вооружение, броневые плиты, хирургические инструменты и имплантаты, оросительные установки, спортинвентарь и даже украшения делают из титана и его сплавов. В процессе азотирования на поверхности металла образуется золотистая плёнка, не уступающая по красоте даже настоящему золоту.

Титан - элемент IV группы побочной подгруппы периодической системы, порядковый номер 22, атомный вес 47,9. Химический знак - Ti. Титан открыт в 1795году и назван в честь героя греческого эпоса Титана. Он входит в состав более чем 70 минералов и является одним из распространенных элементов - содержание его в земной коре составляет примерно 0,6 %. Это металл серебристо-белой окраски. Его температура плавления равна 1665 °С. Коэффициент линейного расширения титана в интервале 20 – 100 °С составляет 8,3×10 -6 град -1 , а теплопроводность l = 15,4 Вт/(м×К). Он существует в двух полиморфных видоизменениях: до 882 °С в виде a-модификации, обладающей гексагональной плотно-упакованной кристаллической решеткой с параметрами а = 2,95 Å и с = 4,86 Å; а выше данной температуры устойчивой является b-трансформация с объемноцентрированной кубической решеткой (а = 3,31 Å).

Металл сочетает большую прочность с малой плотностью r = 4,5 г/см 3 и высокой коррозионной стойкостью. Благодаря этому во многих случаях он обладает значительными преимуществами перед такими основными конструкционными материалами, как сталь и алюминий. Однако из-за низкой теплопроводности затрудняется его применение для конструкций и деталей, работающих в условиях больших температурных перепадов, и при службе на термическую усталость. Металл обладает ползучестью как при повышенных, так и при комнатной температурах. К недостаткам титана как конструкционного материала следует отнести также относительно низкий модуль нормальной упругости.

Металл высокой чистоты обладает хорошими пластическими свойствами. Под влиянием примесей пластичность его резко изменяется. Кислород хорошо растворяется в титане и сильно снижает данную характеристику уже в области малых концентраций. Пластические свойства металла уменьшаются и при добавлении азота. При содержании азота более 0,2 % наступает хрупкое разрушение титана. Вместе с тем кислород и азот повышают временное сопротивление и выносливость металла. В этом отношении они являются полезными примесями.

Вредной примесью является водород. Он резко снижает ударную вязкость титана даже при очень малых концентрациях, за счет образования гидридов. На прочностные характеристики металла водород не оказывает заметного влияния в широком интервале концентраций.

Чистый титан не относится к жаропрочным материалам, так как прочность его резко уменьшается с повышением температуры.

Важной особенностью металла является его способность образовывать твердые растворы с атмосферными газами и водородом. При нагревании титана на воздухе на его поверхности, кроме обычной окалины, образуется слой, состоящий из твердого раствора на основе a-Ti (альфитированный), стабилизированного кислородом, толщина которого зависит от температуры и продолжительности нагрева. Он имеет более высокую температуру превращения, чем основной слой металла, и его образование на поверхности деталей или полуфабрикатов может вызвать хрупкое разрушение.


Титан характеризуется значительной коррозионной стойкостью в атмосфере воздуха, естественной холодной, горячей пресной и морской воде, растворах щелочей, солей неорганических и органических кислот и соединений даже при кипячении. Он стоек по отношению к разбавленным серной, соляной (до 5 %), азотной всех концентраций (кроме дымящейся), уксусной и молочной кислотам, хлоридам и царской водке. Высокая коррозионная стойкость титана объясняется образованием на его поверхности плотной однородной защитной пленки, состав которой зависит от окружающей среды и условий ее образования. В большинстве случаев это диоксид - TiO 2 . При определенных условиях металл, взаимодействующий с соляной кислотой, может покрываться защитным слоем гидрида - TiH 2 . Титан устойчив против кавитационной коррозии и коррозии под напряжением.

Начало промышленного применения титана как конструкционного материала относится к сороковым годам прошлого столетия. В данном качестве титан наибольшее применение находит в авиации, ракетной технике, при сооружении морских судов, в приборостроении и машиностроении. Он сохраняет высокие прочностные характеристики при повышенных температурах и поэтому с успехом применяется для изготовления деталей, подвергающихся высокотемпературному нагреву.

В настоящее время титан широко применяют в металлургии, в том числе в качестве легирующего элемента в нержавеющих и жаростойких сталях. Добавки титана в сплавы алюминия, никеля и меди повышают их прочность. Он является составной частью твердых сплавов для режущих инструментов. Двуокись титана используют для обмазки сварочных электродов. Четыреххлористый титан применяют в военном деле для создания дымовых завес.

В электротехнике и радиотехнике используют порошкообразный титан в качествепоглотителя газов - при нагревании до 500 °С он энергично абсорбирует газы и тем самым обеспечивает в замкнутом объеме высокий вакуум. В связи с этим его применяют для изготовления деталей электронных ламп.

Титан в ряде случаев является незаменимым материалом в химической промышленности и в судостроении. Из него делают детали, предназначенные для перекачки агрессивных жидкостей, теплообменники, работающие в коррозионно-активных средах, подвесные приспособления, используемые при анодировании различных деталей. Титан инертен в электролитах и других жидкостях, применяемых в гальваностегии, и поэтому пригоден для производства различных деталей гальванических ванн. Его широко употребляют при изготовлении гидрометаллургической аппаратуры для никелево-кобальтовых заводов, так как он обладает высокой стойкостью против коррозии и эрозии в контакте с никелевыми и кобальтовыми шламами при больших температурах и давлениях.

Титан наиболее стоек в окислительных средах. В восстановительных средах он корродирует довольно быстро вследствие разрушения защитной окисной пленки.

Сплавы титана с различными элементами являются более перспективными материалами, чем технически-чистый металл.

Основными легирующими компонентами промышленных титановых сплавов являются ванадий, молибден, хром, марганец, медь, алюминий и олово. Практически же титан образует сплавы со всеми металлами, за исключением щелочноземельных элементов, а также с кремнием, бором, водородом, азотом и кислородом.

Наличие полиморфных превращений титана, хорошая растворимость многих элементов в нем, образование химических соединений, обладающих переменной растворимостью, позволяют получить широкую гамму титановых сплавов с разнообразными свойствами.

Они обладают тремя основными преимуществами по сравнению с другими сплавами: малым удельным весом, высокими химическими свойствами и отличной коррозионной стойкостью. Сочетание легкости с большой прочностью делают их особенно перспективными материалами как заменители специальных сталей для авиационной промышленности, а значительная коррозионная стойкость - для судостроения и химической промышленности.

Во многих случаях применение титановых сплавов оказывается экономически выгодным, несмотря на высокую стоимость титана. Например, применение литых титановых насосов с высочайшей коррозионной стойкостью на одном из предприятий России позволило снизить эксплуатационные расходы на один насос в 200 раз. Таких примеров можно привести немало.

В зависимости от характера влияния, оказываемого легирующими элементами на полиморфные превращения титана при сплавлении, все сплавы делятся на три группы:

1) с a-фазой (алюминий);

2) с b-фазой (хром, марганец, железо, медь, никель, бериллий, вольфрам, кобальт, ванадий, молибден, ниобий и тантал);

3) с a + b-фазами (олово, цирконий германий).

Сплавы титана с алюминием имеют меньшую плотность и большую удельную прочность, чем чистый или технически чистый титан. По удельной прочности они превосходят многие нержавеющие и теплостойкие стали в интервале 400 - 500 °С. Эти сплавы обладают более высокой жаропрочностью и наивысшим сопротивлением ползучести, чем многие другие на основе титана. Они также имеют повышенный модуль нормальнойупругости. Сплавы не подвергаются коррозии и слабо окисляются при высоких температурах. Они обладают хорошей свариваемостью, причем даже при значительном содержании алюминия материал шва и околошовной зоны не приобретает хрупкости. Добавка алюминия уменьшает пластичность титана. Наиболее интенсивно это влияние сказывается при содержании алюминия более 7,5 %. Добавка олова в сплавы повышает их прочностные характеристики. При концентрации в них до 5 % Sn заметного снижения пластических свойств не наблюдается. Кроме того, введение олова в сплавы повышает их сопротивляемость окислению и ползучести. Сплавы, содержащие 4 - 5 % Аl и 2 – 3 % Sn, сохраняют значительную механическую прочность до 500 °С.

Цирконий не оказывает большого влияния на механические свойства сплавов, но его присутствие способствует увеличению сопротивления ползучести и повышению длительной прочности. Цирконий является ценным компонентом титановых сплавов.

Сплавы данного типа достаточно пластичны: прокатываются, штампуются и куются в горячем состоянии, свариваются аргоно-дуговой и контактной сваркой, удовлетворительно обрабатываются резанием, обладают хорошей коррозионной стойкостью в концентрированной азотной кислоте, в атмосфере, растворах поваренной соли при цикличных нагрузках и морской воде. Они предназначаются для изготовления деталей, работающих при температурах от 350 до 500 °С при длительных нагрузках и до 900 °С при кратковременных нагрузках. Сплавы поставляются в виде листов, прутков, полос, плит, поковок, штамповок, прессованных профилей, труб и проволоки.

При комнатной температуре они сохраняют кристаллическую решетку, присущую модификации a-титана. В большинстве случаев эти сплавы применяют в отожженном состоянии.

К титановым сплавам с термодинамически устойчивой b-фазой относятся системы, содержащие в своем составе алюминий (3,0 - 4,0 %), молибден (7,0 - 8,0 %) и хром (10,0 - 15,0 %). Однако при этом теряется одно из основных преимуществ титановых сплавов - относительно малая плотность. Это является основной причиной того, что данные сплавы не получили широкого распространения. После закалки с 760 - 780 °С и старения при 450 - 480 °С они имеют временное сопротивление 130 – 150 кГ/мм 2 , это эквивалентно стали с s в = 255 кГ/мм 2 . Однако эта прочность не сохраняется при нагревании, что является основным недостатком указанных сплавов. Они поставляются в виде листов, прутков и поковок.

Наилучшее сочетание свойств достигается в сплавах, состоящих из смеси a- и b-фaз. Непременным компонентом в них является алюминий. Содержание алюминия не только расширяет область температур, при которых сохраняется стабильность a-фазы, но и повышает термическую устойчивость b-составляющей. Кроме того, этот металл уменьшает плотность сплава и тем самым компенсирует увеличение данного параметра, связанное с введением тяжелых легирующих элементов. Они обладают хорошей прочностью и пластичностью. Из них изготовляют листы, прутки, поковки и штамповки.Детали из таких сплавов можно соединять точечной, стыковой и аргоно-дуговой сваркой в защитной атмосфере. Они удовлетворительно обрабатываются резанием, обладают высокой коррозионной стойкостью во влажной атмосфере и в морской воде, обладают хорошей термической стабильностью.

Иногда, кроме алюминия и молибдена, в сплавы добавляется небольшое количество кремния. Это способствует тому, что сплавы в горячем состоянии хорошо поддаются прокатке, штамповке и ковке, а также увеличивается сопротивление ползучести.

Широкое применение находит карбид титана TiC и сплавы на его основе. Карбид титана обладает большой твердостью и очень высокой темпера­турой плавления, что и определяет основные области его применения. Его давно применяют как компонент твердых сплавов для режущих инструментов и штампов. Типичными титансодержащими твердыми сплавами для режущего инструмента являются сплавы Т5К10, Т5К7, Т14К8, Т15К6, ТЗ0К4 (первая цифра соответствует содержанию карбида титана, а вторая - концентрации цементирующего металлического кобальта в %). Карбид титана применяют также в качестве абразивного материала как в порошке, так и в цементированном виде. Его температура плавления выше 3000 °С. Он обладает большой электропроводностью, а при низких температурах - сверхпроводимостью. Ползучесть данного соединения мала вплоть до 1800 °С. При комнатной температуре он хрупок. Карбид титана стоек в холодных и горячих кислотах - соляной, серной, фосфорной, щавелевой, на холоде - в хлорной кислоте, а также в их смесях.

Большое распространение получили жаростойкие материалы на основе карбида титана, легированного молибденом, танталом, ниобием, никелем, кобальтом и другими элементами. Это позволяет получить материалы, в которых сочетаются большая прочность, сопротивляемость ползучести и окислению при высоких температурах карбида титана с пластичностью и сопротивлением тепловому удару металлов. На этом же принципе основано получение жаростойких материалов на основе других карбидов, а также боридов, силицидов, которые объединяются под общим названием керамико-металлических материалов.

Сплавы на основе карбида титана сохраняют достаточно высокую жаропрочность до 1000 – 1100 °С. Они обладают высокой износоустойчивостью и стойкостью против коррозии. Ударная вязкость сплавов мала, и это является основным препятствием для широкого их распространения.

Карбид титана и сплавы на его основе с карбидами других металлов применяют в качестве огнеупорных материалов. Тигли из карбида титана и сплава его с карбидом хрома не смачиваются и практически не взаимодействуют в течение длительного времени с расплавленным оловом, висмутом, свинцом, кадмием и цинком. Не смачивают карбид титана расплавленная медь при 1100 - 1300 °С и серебро при 980 °С в вакууме, алюминий при 700 °С в атмосфере аргона. Сплавы на основе карбида титана с карбидом вольфрама или тантала с добавкой до 15 % Со при 900 – 1000 °С в течение длительного времени почти не поддаются действию расплавленного натрия и висмута.

Все, что нужно знать о титане, а также о хроме и вольфраме

Многих интересует вопрос: какой самый твердый металл в мире? Это титан. Этому твердому веществу и будет посвящена большая часть статьи. Также немного ознакомимся и с такими твердыми металлами как хром и вольфрам.

9 интересных фактов о титане

1. Существует несколько версий, почему металл получил такое название. Согласно одной теории, его назвали в честь Титанов, бесстрашных сверхъестественных существ. По другой версии, название пошло от Титании, королевы фей.
2. Титан был открыт в конце XVIII века немецким и английским химиком.
3. Титан долго не использовали в промышленности из-за его природной хрупкости.
4. В начале 1925 года, после серии опытов, химики получили титан в чистом виде.
5. Стружка от титана легко воспламеняется.
6. Это один из самых легких металлов.
7. Титан может расплавиться только при температуре выше 3200 градусов.
8. Закипает при температуре 3300 градусов.
9. Титан имеет серебряный цвет.

История открытия титана

Металл, который впоследствии назвали титан, открыли двое ученых – англичанин Уильям Грегор и немец Мартин Грегор Клапрот. Ученые работали параллельно, и между собой не пересекались. Разница между открытиями составляет 6 лет.

Уильям Грегор дал своему открытию название — менакин.

Более чем через 30 лет был получен первый сплав титана, который оказался чрезвычайно хрупким, и не мог нигде использоваться. Считается, что лишь в 1925 году был выделен титан в чистом виде, который стал одним из самых востребованных в промышленности металлов.

Доказано, что российский ученый Кириллов в 1875 году сумел добыть чистый титан. Он опубликовал брошюру, в которой подробно описал свою работу. Однако исследования малоизвестного россиянина остались незамеченными.


Общая информация о титане

Титановые сплавы – спасение для механиков и инженеров. Например, корпус самолета изготовлен из титана. Во время полета он достигает скорости в несколько раз больше, чем скорость звука. Титановый корпус нагревается до температуры выше 300 градусов, и не плавится.

Металл замыкает десятку лидеров «Самых распространенных металлов в природе». Большие залежи обнаружены в ЮАР, Китае и , немало титана в Японии, Индии, на Украине.

Общее количество мирового запаса титанов насчитывает более 700 миллионов тонн. Если темпы добычи останутся прежними, титана хватит еще на 150-160 лет.

Крупнейший производитель самого твердого металла в мире – российское предприятие «ВСМПО-Ависма», которое удовлетворяет треть мировых потребностей.


Свойства титана

1. Коррозийная стойкость.
2. Высокая механическая прочность.
3. Небольшая плотность.

Атомный вес титана составляет 47, 88 а.е.м, порядковый номер в химической таблице Менделеева – 22. Внешне он очень похож на сталь.

Механическая плотность металла в 6 раз больше, чем у алюминия, в 2 раза выше, чем у железа. Он может соединиться с кислородом, водородом, азотом. В паре с углеродом металл образует невероятно твердые карбиды.

Теплопроводность титана в 4 раза меньше, чем у железа, и в 13 раз – чем у алюминия.



Процесс добычи титана

В земле титана большое количество, однако, извлечь его из недр стоит немалых денег. Для выработки используют иодидный метод, автором которого считается Ван Аркель де Бур.

В основе метода – способность металла сочетаться с иодом, после разложения этого соединения можно получить чистый, свободный от посторонних примесей титан.

Самые интересные вещи из титана:

  • протезы в медицине;
  • платы мобильных устройств;
  • ракетные комплексы для освоения Космоса;
  • трубопроводы, насосы;
  • навесы, карнизы, наружная обшивка зданий;
  • большинство деталей (шасси, обшивка).

Сферы применения титана

Титан активно используют в военной сфере, медицине, ювелирном деле. Ему дали неофициальное название «металл будущего». Многие говорят, что он помогает превратить мечту в реальность.

Самый твердый металл в мире изначально стали применять в военной и оборонной сфере. Сегодня основным потребителем титановых изделий является авиастроение.

Титан – универсальный конструкционный материал. Долгие годы он применялся для создания турбин самолетов. В авиационных двигателях из титана делают элементы вентилятора, компрессоры, диски.

Конструкция современного летательного аппарата может содержать до 20 тонн титанового сплава.

Основные сферы применения титана в авиастроении:

  • продукция пространственной формы (окантовка дверей, люков, обшивка, настил пола);
  • агрегаты и узлы, которые подвержены сильным нагрузкам (кронштейны крыльев, стойки шасси, гидроцилиндры);
  • части двигателя (корпус, лопатки для компрессоров).

Благодаря титану человек смог пройти сквозь звуковой барьер, и ворваться в Космос. Его использовали для создания пилотируемых ракетных комплексов. Титан может выдержать космическую радиацию, перепады температур, скорость движения.

Этот металл имеет небольшую плотность, что важно в судостроительной сфере. Изделия из титана легкие, а значит, снижается вес , увеличивается его маневренность, скорость, дальность хода. Если корпус корабля обшить титаном, его не нужно будет красить много лет – титан не ржавеет в морской воде (коррозийная стойкость).

Чаще всего этот металл в судостроении используют для изготовления турбинных двигателей, паровых котлов, конденсаторных труб.


Нефтедобывающая отрасль и титан

Перспективной сферой использования сплавов из титана считается сверхглубокое бурение. Для изучения и добычи подземных богатств есть необходимость проникнуть глубоко под землю – свыше 15 тысяч метров. Буровые трубы из алюминия, например, разорвутся из-за собственной тяжести, и только сплавы из титана могут достигнуть действительно большой глубины.

Не так давно титан стал активно использоваться для создания скважин на морских шельфах. Специалисты применяют титановые сплавы в качестве оборудования:

  • нефтедобывающие установки;
  • сосуды высокого давления;
  • глубоководные насосы, трубопроводы.

Титан в спорте, медицине

Титан крайне популярен в спортивной сфере из-за своей прочности и легкости. Несколько десятилетий назад из титановых сплавов сделали велосипед, первый спортивный инвентарь из самого твердого материала в мире. Современный велосипед состоит из титанового корпуса, такого же тормоза и пружин сидений.

В Японии создали титановые клюшки для игры в гольф. Эти приспособления легкие и долговечные, но крайне дорогие по цене.

Из титана делают большинство предметов, которые лежат в рюкзаке альпинистов и путешественников – столовая посуда, наборы для приготовления еды, стойки для укрепления палаток. Титановые ледорубы – очень востребованный спортивный инвентарь.

Этот металл очень востребован в медицинской отрасли. Из титана делают большинство хирургических инструментов – легких и удобных.

Еще одна сфера применения металла будущего – создание протезов. Титан превосходно «сочетается» с организмом человека. Медики назвали этот процесс «настоящее родство». Конструкции из титана безопасны для мышц и костей, редко вызывают аллергическую реакцию, не разрушаются под воздействием жидкости в организме. Протезы из титана стойкие, выдерживают огромные физические нагрузки.

Титан – удивительный металл. Он помогает человеку достичь невиданных высот в различных сферах жизни. Его любят и почитают за прочность, легкость и долгие годы службы.



Одним из самых твердых металлов является и хром

Интересные факты о хроме

1. Название металла происходит от греческого слова «chroma», что в переводе означает краска.
2. В естественной среде хром в чистом виде не встречается, а только в виде хромистого железняка, двойного оксида.
3. Самые большие месторождения металла расположены в ЮАР, России, Казахстане и Зимбабве.
4. Плотность металла – 7200кг/м3.
5. Хром плавится при температуре 1907 градусов.
6. Закипает при температуре 2671 градусов.
7. Совершенно чистый без примесей хром характеризуется тягучестью и вязкостью. В сочетании с кислородом, азотом или водородом металл становится ломким и очень твердым.
8. Этот металл серебристо-белого цвета открыл француз Луи Никола Воклен в конце XVIII века.


Свойства металла хрома

У хрома очень высокая твердость, им можно разрезать стекло. Он не окисляется воздухом, влагой. Если металл нагреть, окисление произойдет только на поверхности.

В год потребляют более 15 000 тон чистого хрома. Лидером по производству чистейшего хрома считается английская компания «Bell Metals».

Больше всего хрома потребляют в США, западных странах Европы и Японии. Рынок хрома нестабилен, и цены охватывают широкий диапазон.


Сферы использования хрома

Чаще всего применяется для создания сплавов и гальванических покрытий (хромирование на транспорт).

Хром добавляют в сталь, что улучшает физические свойства металла. Эти сплавы – наиболее востребованы в черной металлургии.

Сталь самой популярной марки состоит из хрома (18%) и никеля (8%). Такие сплавы отлично противостоят окислению, коррозии, прочны даже при высоких температурах.

Из стали, которая содержит треть хрома, изготавливают нагревательные печи.

Что еще делают из хрома?

1. Стволы огнестрельного оружия.
2. Корпус подводных лодок.
3. Кирпичи, которые используют в металлургии.


Еще одним чрезвычайно твердым металлом является вольфрам

Интересные факты о вольфраме

1. Название металла в переводе с немецкого («Wolf Rahm») означает «пена волка».
2. Это наиболее тугоплавкий металл в мире.
3. Вольфрам имеет светло-серый оттенок.
4. Металл был открыт в конце XVIII века (1781г) шведом Карлом Шееле.
5. Вольфрам плавится при температуре 3422 градусов, кипит – при 5900.
6. Металл имеет плотность 19.3 г/см³.
7. Атомная масса – 183.85, элемент VI группы в периодической системе Менделеева (порядковый номер – 74).


Процесс добычи вольфрама

Вольфрам относится к большой группе редких металлов. В нее входит также рубидий, молибден. Для этой группы характерна небольшая распространенность металлов в природе и малые масштабы потребления.

Получение вольфрама состоит из 3 этапов:

  • отделение металла от руды, скапливание его в растворе;
  • выделение соединения, его очистка;
  • выделение чистого металла из готового химического соединения.
  • Исходный материал для получения вольфрама – шеелит и вольфрамит.


Сферы применения вольфрама

Вольфрам является основой большинства прочных сплавов. Из него делают авиационные двигатели, детали электровакуумных приборов, нити накаливания.
Высокая плотность металла позволяет использовать вольфрам для создания баллистических ракет, пуль, противовесы, артиллерийские снаряды.

Соединения на основе вольфрама применяют для обработки других металлов, в горнодобывающей промышленности (бурение скважин), лакокрасочной, текстильной сфере (как катализатор органического синтеза).

Из сложных вольфрамовых соединений делают:

  • проволоки – используются в нагревательных печах;
  • ленты, фольгу, пластины, листы – для прокатки и плоской ковки.


Титан, хром и вольфрам возглавляют список «Самые твердые металлы в мире». Их используют во многих сферах деятельности человека – авиа и ракетостроении, военной области, строительстве, и при этом, это далеко не полный спектр применения металлов.

Многих интересует немного загадочный и не до конца изученный титан - металл, свойства которого отличаются некоторой двоякостью. Металл и самый прочный, и самый хрупкий.

Самый прочный и самый хрупкий металл

Его открыли двое ученых с разницей в 6 лет - англичанин У. Грегор и немец М. Клапрот. Название титана связывают, с одной стороны, с мифическими титанами, сверхъестественными и бесстрашными, с другой стороны, с Титанией - королевой фей.
Это один из самых распространенных в природе материалов, но процесс получения чистого металла отличается особой сложностью.

22 химический элемент таблицы Д. Менделеева Titanium (Ti) относится к 4 группе 4 периода.

Цвет титана серебристо-белый с выраженным блеском. Его блики переливаются всеми цветами радуги.

Это один из тугоплавких металлов. Он плавится при температуре +1660 °С (±20°). Титан отличается парамагнитностью: он не намагничивается в магнитном поле и не выталкивается из него.
Металл характеризуется низкой плотностью и высокой прочностью. Но особенность этого материала заключается в том, что даже минимальные примеси других химических элементов кардинально изменяют его свойства. При наличии ничтожной доли других металлов титан теряет свою жаропрочность, а минимум неметаллических веществ в его составе делают сплав хрупким.
Эта особенность обуславливает наличие 2 видов материала: чистого и технического.

  1. Титан чистого вида используют там, где требуется очень легкое вещество, выдерживающее большие нагрузки и сверхвысокие температурные диапазоны.
  2. Технический материал применяется там, где ценятся такие параметры, как легкость, прочность и устойчивость к коррозии.

Вещество обладает свойством анизотропности. Это означает, что металл может изменять свои физические характеристики, исходя из приложенных усилий. На эту особенность следует обращать внимание, планируя применение материала.

Титан теряет прочность при малейшем присутствии в нем примесей других металлов

Проведенные исследования свойств титана в нормальных условиях подтверждают его инертность. Вещество не реагирует на элементы, находящиеся в окружающей атмосфере.
Изменение параметров начинается при повышении температуры до +400°С и выше. Титан вступает в реакцию с кислородом, может воспламеняться в азоте, впитывает газы.
Эти свойства затрудняют получение чистого вещества и его сплавов. Производство титана основано на применении дорогостоящей вакуумной аппаратуры.

Титан и конкуренция с другими металлами

Этот металл постоянно сравнивают с алюминием и сплавами железа. Многие химические свойства титаназначительно лучше, чем у конкурентов:

  1. По механической прочности титан превосходит железо в 2 раза, а алюминий в 6 раз. Прочность его увеличивается при снижении температуры, чего не отмечается у конкурентов.
    Антикоррозионные характеристики титана значительно превышают показатели других металлов.
  2. При температурах окружающей среды металл абсолютно инертен. Но при повышении температуры свыше +200°С вещество начинает поглощать водород, изменяя свои характеристики.
  3. При более высоких температурах титан вступает в реакции с другими химическими элементами. Он обладает высокой удельной прочностью, что в 2 раза превосходит свойства лучших сплавов железа.
  4. Антикоррозионные свойства титана значительно превышают показатели алюминия и нержавеющей стали.
  5. Вещество плохо проводит электричество. Титан имеет удельное электросопротивление в 5 раз выше, чем у железа, в 20 раз, чем у алюминия, и в 10 раз выше, чем у магния.
  6. Титан характеризуется низкой теплопроводностью, это обусловлено низким коэффициентом температурного расширения. Она меньше в 3 раза, чем у железа, и в 12, чем у алюминия.

Какими способами получают титан?

Материал занимает 10 место по распространению в природе. Существует около 70 минералов, содержащих титан в виде титановой кислоты или его двуокиси. Наиболее распространенные из них и содержащие высокий процент производных металла:

  • ильменит;
  • рутил;
  • анатаз;
  • перовскит;
  • брукит.

Основные залежи титановых руд находятся в США, Великобритании, Японии, большие месторождения их открыты в России, Украине, Канаде, Франции, Испании, Бельгии.

Добыча титана — дорогой и трудозатратный процесс

Получение металла из них стоит очень дорого. Ученые разработали 4 способа производства титана, каждый из которых рабочий и эффективно используется в промышленности:

  1. Магниетермический способ. Добытое сырье, содержащее титановые примеси, перерабатывают и получают диоксид титана. Это вещество подвергается хлорированию в шахтных или солевых хлораторах при повышенном температурном режиме. Процесс очень медленный, ведется в присутствии углеродного катализатора. При этом твердый диоксид переводится в газообразное вещество — тетрахлорид титана. Полученный материал восстанавливается магнием или натрием. Сплав, образовавшийся при реакции, подвергают нагреванию в вакуумной установке до сверхвысоких температур. В результате реакции происходит испарение магния и его соединений с хлором. В конце процесса получают губкоподобный материал. Его плавят и получают титан высокого качества.
  2. Гидридно-кальциевый способ. Руду подвергают химической реакции и получают гидрид титана. Следующий этап — разделение вещества на составляющие. Титан и водород выделяют в процессе нагревания в вакуумных установках. По окончании процесса получают оксид кальция, который отмывают слабыми кислотами. Первые два способа относятся к промышленному производству. Они позволяют получать в кратчайшие сроки чистый титан с относительно небольшими издержками.
  3. Электролизный метод. Титановые соединения подвергают воздействию током большой силы. В зависимости от исходного сырья, соединения разделяются на составляющие: хлор, кислород и титан.
  4. Йодидный способ или рафинирование. Полученный из минералов диоксид титана обдают парами йода. В результате реакции образуется йодид титана, который нагревают до высокой температуры — +1300…+1400°С и воздействуют на него электрическим током. При этом из исходного материала выделяются составляющие: йод и титан. Металл, полученный данным способом, не имеет примесей и добавок.

Области применения

Применение титана зависит от степени его очистки от примесей. Наличие даже небольшого количества других химических элементов в составе сплава титана кардинально меняет его физико-механические характеристики.

Титан с некоторым количеством примесей называется техническим. Он имеет высокие показатели коррозийной стойкости, это легкий и очень прочный материал. От этих и других показателей зависит его применение.

  • В химической промышленности из титана и его сплавов изготавливают теплообменники, различного диаметра трубы, арматуру, корпуса и детали для насосов различного назначения. Вещество незаменимо в местах, где требуются высокая прочность и стойкость к кислотам.
  • На транспорте титан используют для изготовления деталей и агрегатов велосипедов, автомобилей, железнодорожных вагонов и составов. Применение материала уменьшает вес подвижных составов и автомобилей, придает легкость и прочность велосипедным деталям.
  • Большое значение титан имеет в военно-морском ведомстве . Из него изготавливают детали и элементы корпусов для подводных лодок, пропеллеры для лодок и вертолетов.
  • В строительной промышленности применяется сплав цинк-титан. Он используется как отделочный материал для фасадов и кровель. Этот очень прочный сплав имеет важное свойство: из него можно изготавливать архитектурные детали самой фантастической конфигурации. Он может принимать любую форму.
  • В последнее десятилетие титан широко применяют в нефтедобывающей отрасли . Сплавы его применяют при изготовлении оборудования для сверхглубокого бурения. Материал используется для изготовления оборудования для добычи нефти и газа на морских шельфах.

У титана очень широкая область применения

Чистый титан имеет свои области применения. Он нужен там, где необходима стойкость к высоким температурам и при этом должна сохраняться прочность металла.

Его применяют в:

  • авиастроении и космической отрасли для изготовления деталей обшивки, корпусов, элементов крепления, шасси;
  • медицине для протезирования и изготовления сердечных клапанов и других аппаратов;
  • технике для работы в криогенной области (здесь используют свойство титана — при снижении температуры усиливается прочность металла и не утрачивается его пластичность).

В процентном соотношении использование титана для производства различных материалов выглядит так:

  • на изготовление краски используется 60 %;
  • пластик потребляет 20 %;
  • в производстве бумаги используют 13 %;
  • машиностроение потребляет 7 % получаемого титана и его сплавов.

Сырье и процесс получения титана дорогостоящие, затраты на его производство компенсируются и окупаются сроком службы изделий из этого вещества, его способностью не менять свой внешний вид за весь период эксплуатации.

Титан – один из загадочных, малоизученных макроэлементов в науке и жизни человека. Хотя его не зря называют «космическим» элементом, т.к. он активно применяется в передовых отраслях науки, техники, медицины и во многом другом – это элемент будущего.

Этот металл серебристо-серого цвета (см. фото), не растворим в воде. Он у него небольшая химическая плотность, поэтому ему характерна легкость. В то же время он очень прочен и легко поддается обработке из-за своей плавкости и пластичности. Элемент химически инертен благодаря наличию на поверхности защитной пленки. Титан не горюч, но его пыль взрывоопасна.

Открытие этого химического элемента принадлежит большому любителю минералов англичанину Уильяму Мак-Грегору. Но своим названием титан обязан все же химику – Мартину Генриху Клапроту, который обнаружил его независимо от Мак-Грегора.

Предположения о причинах, по которым этот металл назвали «титаном» романтичны. По одной версии, название связано с древнегреческими богами Титанами, родителями которых являлись бог Уран и богиня Гея, а вот согласно второй, оно происходит от имени королевы фей – Титании.

Как бы там ни было, этот макроэлемент девятый по нахождению в природе. Он входит в состав тканей представителей флоры и фауны. Много его в морской воде (до 7%), а вот в почве его содержится всего 0,57%. Наиболее богат запасами титана Китай, за ним идет Россия.

Действие титана

Действие макроэлемента на организм обусловлено его физико-химическими свойствами. Его частицы очень малы, они могут проникать в клеточную структуру и влиять на ее работу. Считается, что из-за своей инертности макроэлемент не взаимодействует химически с раздражителями, и поэтому не токсичен. Однако он вступает в связь с клетками тканей, органов, крови, лимфы посредством физического действия, что приводит к их механическому повреждению. Так, элемент может своим действием привести к повреждению одно- и двухцепочной ДНК, повредить хромосомы, что может привести к риску развития рака и сбоя в генетическом коде.

Выяснилось, что частицы макроэлемента не способны пройти через кожу. Поэтому попадают они внутрь человека только с едой, водой и воздухом.

Титан лучше усваивается через желудочно-кишечный тракт (1-3%), а вот через дыхательные пути всасывается только около 1%, однако содержание его в организме сконцентрировано как в легких (30%). С чем это связано? Проанализировав все вышеуказанные цифры, можно прийти к нескольким выводам. Во-первых, титан вообще плохо усваивается организмом. Во-вторых, через ЖКТ идет выведение титана через кал (0,52 мг) и мочу (0,33 мг), а вот в легких такой механизм слабый или вовсе отсутствует, так как с возрастом у человека концентрация титана в этом органе возрастает практически в 100 раз. Чем же обусловлена такая большая концентрация при таком слабом всасывании? Скорее всего, это связано с постоянной атакой на наш организм пыли, в которой всегда присутствует титановая составляющая. Кроме того в данном лучае нужно учитывать нашу экологию и наличие промышленных мощностей вблизи населенных пунктов.

По сравнению с легкими, в остальных органах, таких как селезенка, надпочечники, щитовидная железа, содержание макроэлемента на протяжении всей жизни остается неизменным. Также присутствие элемента наблюдается в лимфе, плаценте, головном мозге, женском грудном молоке, костях, ногтях, волосах, хрусталике глаза, тканях эпителия.

Находясь в костях, титан участвует в их срастании после переломов. Также положительное действие наблюдается в восстановительных процессах, происходящих в поврежденных подвижных соединениях костей при артритах и артрозах. Этот металл является сильным антиоксидантом. Ослабляя действие свободных радикалов на клетки кожи и крови, он защищает весь организм от преждевременного старения и изнашивания.

Концентрируясь в отделах мозга, отвечающих за зрение и слух, положительно влияет на их функционирование. Нахождение металла в надпочечниках и щитовидной железе подразумевает его участие в вырабатывании гормонов, участвующих в обмене веществ. Он также задействован в выработке гемоглобина, выработке эритроцитов. Снижая в крови содержание холестерина и мочевины, следит за ее нормальным составом.

Негативное действие титана на организм связано с тем, что он является тяжелым металлом . Попадая в организм, он не расщепляется и не разлагается, а оседает в органах и тканях человека, отравляя его и вмешиваясь в процессы жизнедеятельности. Он не подвержен коррозии и устойчив к действию щелочей и кислот, поэтому желудочный сок не способен на него воздействовать.

Соединения титана имеют способность не пропускать коротковолновое ультрафиолетовое излучение и не всасываются через кожу, поэтому их можно использовать для защиты кожи от ультрафиолета.

Доказано, что курение увеличивает поступление металла в легкие из воздуха во много раз. Это ли не повод бросить эту вредную привычку!

Суточная норма - какова потребность в химическом элементе?

Суточная норма макроэлемента обусловлена тем, что в теле человека содержится примерно 20 мг титана, из них 2,4 мг – в легких. Каждый день с пищей организм приобретает 0,85 мг вещества, с водой – 0,002 мг, а с воздухом – 0,0007 мг. Суточная норма для титана очень условна, так как последствия его влияния на органы до конца не изучено. Приблизительно она равняется около 300-600 мкг в сутки. Нет никаких клинических данных о последствиях превышения этой нормы – все на стадии опытных исследований.

Недостаток титана

Состояния, при которых бы наблюдался недостаток металла, не выявлены, поэтому ученые пришли к выводу, что их в природе не существует. Но его дефицит наблюдается при большинстве тяжелых заболеваний, что может ухудшить состояние больного. Этот недостаток можно убрать титаносодержащими препаратами.

Влияние избытка титана на организм

Избыток макроэлемента единоразового поступления титана в организм не выявлен. Если, предположим, человек проглотил титановый штифт, то, по всей видимости, об отравлении говорить не приходится. Скорее всего, из-за своей инертности элемент не вступит в контакт, а выведется естественным путем.

Большую опасность вызывает систематическое увеличение концентрации макроэлемента в органах дыхания. Это приводит к повреждению дыхательной и лимфатической систем. Также есть непосредственная связь между степенью протекания силикоза и содержанием элемента в органах дыхания. Чем больше его содержание, тем тяжелее протекает болезнь.

Избыток тяжелого металла наблюдается у людей, работающих на химических и металлургических предприятиях. Наиболее опасен хлорид титана – за 3 рабочих года начинается проявление тяжелых хронических заболеваний.

Такие заболевания лечат специальными препаратами и витаминами.

Каковы источники?

Элемент попадает в организм человека в основном с пищей и водой. Больше всего его в бобовых (горох, фасоль, чечевица, бобы) и в злаковых (рожь, ячмень, гречка, овес). Выявлено его присутствие в молочных и мясных блюдах, а также в яйцах. В растениях сконцентрировано больше этого элемента, чем в животных. Особенно высоко его содержание в водоросли – кустистой кладофоре.

Во всех продуктах питания, где присутствует пищевой краситель Е171, содержится диоксид этого металла. Его применяют в изготовлении соусов и приправ. Вред этой добавки находится под вопросом, так как оксид титана практически не растворим в воде и желудочном соке.

Показания к применению

Показания к применению элемента, несмотря на то, что этот космический элемент еще мало изучен, есть, он активно применяется во всех сферах медицины. Из-за своей прочности, коррозионной стойкости и биологической инертности, он широко применяется в сферах протезирования для изготовления имплантантов. Его применяют в стоматологии, нейрохирургии, ортопедии. Благодаря долговечности из него изготавливают хирургические инструменты.

Диоксид этого вещества используют в лечении болезней кожи, таких как хейлит, герпес, угревая сыпь, воспаление слизистой рта. Им удаляют гемангиому лица.

Никелид металла задействован в устранении местно-распространенного рака гортани. Его используют для эндопротезирования гортани и трахеи. Также он применяется для лечения инфицированных ран в сочетании с растворами антибиотиков.

Аквакомплекс глицеросольвата макроэлемента способствует заживлению язвенных ран.

Для ученых по всему миру открыто много возможностей для изучения элемента будущего, так как его физико-химические свойства высоки и могут принести безграничную пользу для человечества.