Понятие о валентности элемента в соединении. Валентные возможности атомов химических элементов

Химическая формула отражает состав (структуру) химического соединения или простого вещества. Например, Н 2 О - два атома водорода соединены с атомом кислорода. Химические формулы содержат также некоторые сведения о структуре вещества: например, Fe(OH) 3 , Al 2 (SO 4) 3 - в этих формулах указаны некоторые устойчивые группировки (ОН, SO 4), которые входят в состав вещества - его молекулы, формульной или структурной единицы (ФЕ или СЕ).

Молекулярная формула указывает число атомов каждого элемента в молекуле. Молекулярная формула описывает только вещества с молекулярным строением (газы, жидкости и некоторые твердые вещества). Состав вещества с атомной или ионной структурой можно описать только символами формульных единиц.

Формульные единицы указывают простейшее соотношение между числом атомов разных элементов в веществе. Например, формульная единица бензола  СН, молекулярная формула  С 6 Н 6 .

Структурная (графическая) формула указывает порядок соединения атомов в молекуле (а также в ФЕ и СЕ) и число связей между атомами.

Рассмотрение таких формул привело к представлению о валентности (valentia - сила) - как о способности атома данного элемента присоединять к себе определенное число других атомов. Можно выделить три вида валентности: стехиометрическую (включая степень окисления), структурную и электронную.

Стехиометрическая валентность. Количественный подход к определению валентности оказался возможным после установления понятия «эквивалент» и его определения по закону эквивалентов. Основываясь на этих понятиях можно ввести представление о стехиометрической валентности - это число эквивалентов, которое может к себе присоединить данный атом, или - число эквивалентов в атоме. Эквиваленты определяются по количеству атомов водорода, то и V стх фактически означает число атомов водорода (или эквивалентных ему частиц), с которыми взаимодействует данный атом.

V стх = Z B или V стх = . (1.1)

Например, в SO 3 ( S= +6), Z B (S) равен 6 V стх (S) = 6.

Эквивалент водорода равен 1, поэтому для элементов в приведенных ниже соединениях Z B (Cl) = 1, Z B (О) =2, Z B (N) = 3, а Z B (C) = 4. Численное значение стехиометрической валентности принято обозначать римскими цифрами:

I I I II III I IV I

HCl, H 2 O, NН 3 , CH 4 .

В тех случаях, когда элемент не соединяется с водородом, валентность искомого элемента определяется по элементу, валентность которого известна. Чаще всего ее находят по кислороду, поскольку валентность его в соединениях обычно равна двум. Например, в соединениях:

II II III II IV II

CaO Al 2 O 3 CО 2 .

При определении стехиометрической валентности элемента по формуле бинарного соединения следует помнить, что суммарная валентность всех атомов одного элемента должна быть равна суммарной валентности всех атомов другого элемента.

Зная валентность элементов, можно составить химическую формулу вещества. При составлении химических формул можно соблюдать следующий порядок действий:

1. Пишут рядом химические символы элементов, которые входят в состав соединения: KO AlCl AlO ;

2. Над символами химических элементов проставляют их валентность:

I II III I III II

3. Используя выше сформулированное правило, определяют наименьшее общее кратное чисел, выражающих стехиометрическую валентность обоих элементов (2, 3 и 6, соответственно).

    Делением наименьшего общего кратного на валентность соответствующего элемента находят индексы:

I II III I III II

K 2 O AlCl 3 Al 2 O 3 .

Пример 1. Составить формулу оксида хлора, зная, что хлор в нем семивалентен, а кислород - двухвалентен.

Решение. Находим наименьшее кратное чисел 2 и 7 - оно равно 14. Разделив наименьшее общее кратное на стехиометрическую валентность соответствующего элемента, находим индексы: для атомов хлора 14/7 = 2, для атомов кислорода 14/2 = 7.

Формула оксида -Cl 2 O 7 .

Степень окисления также характеризует состав вещества и равна стехиометрической валентности со знаком "плюс" (для металла или более электроположительного элемента в молекуле) или “минус”.

 = ±V стх. (1.2)

w определяется через V стх, следовательно через эквивалент, и это означает, что w(Н) = ±1; далее опытным путем могут быть найдены w всех других элементов в различных соединениях. В частности, важно, что ряд элементов имеют всегда или почти всегда постоянные степени окисления.

Полезно помнить следующие правила определения степеней окисления.

1. w(Н) = ±1 (. w = +1 в Н 2 О, НCl; . w = –1 в NaH, CaH 2);

2. F (фтор) во всех соединениях имеет w = –1, остальные галогены с металлами, водородом и другими более электроположительными элементами тоже имеют w = –1.

3. Кислород в обычных соединения имеет. w = –2 (исключения – пероксид водорода и его производные – Н 2 О 2 или BaO 2 , в которых кислород имеет степень окисления –1, а также фторид кислорода OF 2 , степень окисления кислорода в котором равна +2).

4. Щелочные (Li – Fr) и щелочно-земельные (Ca - Ra) металлы всегда имеют степень окисления, равную номеру группы, то есть +1 и +2, соответственно;

5. Al, Ga, In, Sc, Y, La и лантаноиды (кроме Се) – w = +3.

6. Высшая степень окисления элемента равна номеру группы периодической системы, а низшая = (№ группы - 8). Например, высшая w (S) = +6 в SO 3 , низшая w = -2 в Н 2 S.

7. Степени окисления простых веществ приняты равными нулю.

8. Степени окисления ионов равны их зарядам.

9. Степени окисления элементов в соединении компенсируют друг друга так, что их сумма для всех атомов в молекуле или нейтральной формульной единице равна нулю, а для иона - его заряду. Это можно использовать для определения неизвестной степени окисления по известным и составления формулы многоэлементных соединений.

Пример 2. Определить степень окисления хрома в солиK 2 CrO 4 и в ионеCr 2 O 7 2 - .

Решение. Принимаемw(К) = +1;w(О) =-2. Для структурной единицыK 2 CrO 4 имеем:

2 . (+1) + Х + 4 . (-2) = 0, отсюда Х =w(Сr) = +6.

Для иона Cr 2 O 7 2 - имеем: 2 . Х + 7 . (-2) =-2, Х =w(Cr) = +6.

То есть степень окисления хрома в обоих случаях одинакова.

Пример 3. Определить степень окисления фосфора в соединенияхP 2 O 3 иPH 3 .

Решение. В соединенииP 2 O 3 w(О) =-2. Исходя из того, что алгебраическая сумма степеней окисления молекулы должна быть равной нулю, находим степень окисления фосфора: 2 . Х + 3 . (-2) = 0, отсюда Х =w(Р) = +3.

В соединении PH 3 w(Н) = +1, отсюда Х + 3.(+1) = 0. Х =w(Р) =-3.

Пример 4. Напишите формулы оксидов, которые можно получить при термическом разложении перечисленных ниже гидроксидов:

H 2 SiO 3 ; Fe(OH) 3 ; H 3 AsO 4 ; H 2 WO 4 ; Cu(OH) 2 .

Решение. H 2 SiO 3 -определим степень окисления кремния:w(Н) = +1,w(О) =-2, отсюда: 2 . (+1) + Х + 3 . (-2) = 0.w(Si) = Х = +4. Составляем формулу оксида-SiO 2 .

Fe(OH) 3 -заряд гидроксогруппы равен-1, следовательноw(Fe) = +3 и формула соответствующего оксидаFe 2 O 3 .

H 3 AsO 4 -степень окисления мышьяка в кислоте: 3 . (+1) +X+ 4 . (-2) = 0.X=w(As) = +5. Таким образом, формула оксида-As 2 O 5 .

H 2 WO 4 -w(W) в кислоте равна +6, таким образом формула соответствующего оксида-WO 3 .

Cu(OH) 2 -так как имеется две гидроксогруппы, заряд которой равен-1, следовательноw(Cu) = +2 и формула оксида -CuO.

Большинство элементов имеют по несколько степеней окисления.

Рассмотрим, как с помощью таблицы Д.И. Менделеева можно определить основные степени окисления элементов.

Устойчивые степени окисления элементов главных подгрупп можно определять по следующим правилам:

1. У элементов I-III групп существуют единственные степени окисления - положительные и равные по величине номерам групп (кроме таллия, имеющего w = +1 и +3).

У элементов IV-VI групп, кроме положительной степени окисления, соответствующей номеру группы, и отрицательной, равной разности между числом 8 и номером группы, существуют еще промежуточные степени окисления, обычно отличающиеся между собой на 2 единицы. Для IV группы степени окисления, соответственно, равны +4, +2, -2, -4; для элементов V группы соответственно -3, -1 +3 +5; и для VI группы - +6, +4, -2.

3. У элементов VII группы существуют все степени окисления от +7 до -1, различающиеся на две единицы, т.е. +7,+5, +3, +1 и -1. В группе галогенов выделяется фтор, который не имеет положительных степеней окисления и в соединениях с другими элементами существует только в одной степени окисления -1. (Имеется несколько соединений галогенов с четными степенями окисления: ClO, ClO 2 и др.)

У элементов побочных подгрупп нет простой связи между устойчивыми степенями окисления и номером группы. У некоторых элементов побочных подгрупп устойчивые степени окисления следует просто запомнить. К таким элементам относятся:

Cr (+3 и +6), Mn (+7, +6, +4 и +2), Fe, Co и Ni (+3 и +2), Cu (+2 и +1), Ag (+1), Au (+3 и +1), Zn и Cd (+2), Hg (+2 и +1).

Для составления формул трех- и многоэлементных соединений по степеням окисления необходимо знать степени окисления всех элементов. При этом количество атомов элементов в формуле определяется из условия равенства суммы степеней окисления всех атомов заряду формульной единицы (молекулы, иона). Например, если известно, что в незаряженной формульной единице имеются атомы K, Cr и О со степенями окисления равными +1, +6 и -2 соответственно, то этому условию будут удовлетворять формулы K 2 CrO 4 , K 2 Cr 2 O 7 , K 2 Cr 3 O 10 и многие другие; аналогично этому иону с зарядом -2, содержащему Cr +6 и O - 2 будут соответствовать формулы CrO 4 2 - , Cr 2 O 7 2 - , Cr 3 O 10 2 - , Cr 4 O 13 2 - и т.д.

3. Электронная валентность V ‑ число химических связей, образуемых данным атомом.

Например, в молекуле H 2 O 2 Н ¾ О

V стх (O) = 1, V к. ч.(O) = 2, V .(O) = 2

То есть, имеются химические соединения, в которых стехиометрическая и электронная валентности не совпадают; к ним, например, относятся и комплексные соединения.

Координационная и электронная валентности более подробно рассматриваются в темах “Химическая связь” и “Комплексные соединения”.

Рассматривая формулы различных соединений, нетрудно заметить, что число атомов одного и того же элемента в молекулах различных веществ не одинаково. Например, HCl, NH 4 Cl, H 2 S, H 3 PO 4 и т.д. Число атомов водорода в этих соединениях изменяется от 1 до 4. Это характерно не только для водорода.

Как же угадать, какой индекс поставить рядом с обозначением химического элемента? Как составляются формулы вещества? Это легко сделать, когда знаешь валентность элементов, входящих в состав молекулы данного вещества.

это свойство атома данного элемента присоединять, удерживать или замещать в химических реакциях определённое количество атомов другого элемента. За единицу валентности принята валентность атома водорода. Поэтому иногда определение валентности формулируют так:валентность это свойство атома данного элемента присоединять или замещать определённое количество атомов водорода.

Если к одному атому данного элемента прикрепляется один атом водорода, то элемент одновалентен, если два двухвалентен и т.д. Водородные соединения известны не для всех элементов, но почти все элементы образуют соединения с кислородом О. Кислород считается постоянно двухвалентным.

Постоянная валентность:

I H, Na, Li, K, Rb, Cs
II O, Be, Mg, Ca, Sr, Ba, Ra, Zn, Cd
III B, Al, Ga, In

Но как поступить в том случае, если элемент не соединяется с водородом? Тогда валентность необходимого элемента определяют по валентности известного элемента. Чаще всего её находят, используя валентность кислорода, потому что в соединениях его валентность всегда равно 2.Например, не составит труда найти валентность элементов в следующих соединениях: Na 2 O (валентность Na 1, O 2), Al 2 O 3 (валентность Al 3, O 2).

Химическую формулу данного вещества можно составить, только зная валентность элементов. Например, составить формулы таких соединений, как CaO, BaO, CO, просто, потому что число атомов в молекулах одинаково, так как валентности элементов равны.

А если валентности разные? Когда мы действуем в таком случае? Необходимо запомнить следующее правило: в формуле любого химического соединения произведение валентности одного элемента на число его атомов в молекуле равно произведению валентности на число атомов другого элемента. Например, если известно, что валентность Mn в соединении равна 7, а O 2, тогда формула соединения будет выглядеть так Mn 2 O 7.

Как же мы получили формулу?

Рассмотрим алгоритм составления формул по валентности для состоящих из двух химических элементов.

Существует правило, что число валентностей у одного химического элемента равно числу валентностей у другого . Рассмотрим на примере образования молекулы, состоящей из марганца и кислорода.
Будем составлять в соответствии с алгоритмом:

1. Записываем рядом символы химических элементов:

Mn O

2. Ставим над химическими элементами цифрами их валентности (валентность химического элемента можно найти в таблице периодической системы Менделева, у марганца 7, у кислорода 2.

3. Находим наименьшее общее кратное (наименьшее число, которое делится без остатка на 7 и на 2). Это число 14. Делим его на валентности элементов 14: 7 = 2, 14: 2 = 7, 2 и 7 будут индексами, соответственно у фосфора и кислорода. Подставляем индексы.

Зная валентность одного химического элемента, следуя правилу: валентность одного элемента × число его атомов в молекуле = валентность другого элемента × число атомов этого (другого) элемента, можно определить валентность другого.

Mn 2 O 7 (7 · 2 = 2 · 7).

2х = 14,

х = 7.

Понятие о валентности было введено в химию до того, как стало известно строение атома. Сейчас установлено, что это свойство элемента связано с числом внешних электронов. Для многих элементов максимальная валентность вытекает из положения этих элементов в периодической системе.

На уроках химии вы уже познакомились с понятием валентности химических элементов. Мы собрали в одном месте всю полезную информацию по этому вопросу. Используйте ее, когда будете готовиться к ГИА и ЕГЭ.

Валентность и химический анализ

Валентность – способность атомов химических элементов вступать в химические соединения с атомами других элементов. Другими словами, это способность атома образовывать определенное число химических связей с другими атомами.

С латыни слово «валентность» переводится как «сила, способность». Очень верное название, правда?

Понятие «валентность» - одно из основных в химии. Было введено еще до того, как ученым стало известно строение атома (в далеком 1853 году). Поэтому по мере изучения строения атома пережило некоторые изменения.

Так, с точки зрения электронной теории валентность напрямую связана с числом внешних электронов атома элемента. Это значит, что под «валентностью» подразумевают число электронных пар, которыми атом связан с другими атомами.

Зная это, ученые смогли описать природу химической связи. Она заключается в том, что пара атомов вещества делит между собой пару валентных электронов.

Вы спросите, как же химики 19 века смогли описать валентность еще тогда, когда считали, что мельче атома частиц не бывает? Нельзя сказать, что это было так уж просто – они опирались на химический анализ.

Путем химического анализа ученые прошлого определяли состав химического соединения: сколько атомов различных элементов содержится в молекуле рассматриваемого вещества. Для этого нужно было определить, какова точная масса каждого элемента в образце чистого (без примесей) вещества.

Правда, метод этот не без изъянов. Потому что определить подобным образом валентность элемента можно только в его простом соединении со всегда одновалентным водородом (гидрид) или всегда двухвалентным кислородом (оксид). К примеру, валентность азота в NH 3 – III, поскольку один атом водорода связан с тремя атомами азота. А валентность углерода в метане (СН 4), по тому же принципу, – IV.

Этот метод для определения валентности годится только для простых веществ. А вот в кислотах таким образом мы можем только определить валентность соединений вроде кислотных остатков, но не всех элементов (кроме известной нам валентности водорода) по отдельности.

Как вы уже обратили внимание, обозначается валентность римскими цифрами.

Валентность и кислоты

Поскольку валентность водорода остается неизменной и хорошо вам известна, вы легко сможете определить и валентность кислотного остатка. Так, к примеру, в H 2 SO 3 валентность SO 3 – I, в HСlO 3 валентность СlO 3 – I.

Аналогчиным образом, если известна валентность кислотного остатка, несложно записать правильную формулу кислоты: NO 2 (I) – HNO 2 , S 4 O 6 (II) – H 2 S 4 O 6 .

Валентность и формулы

Понятие валентности имеет смысл только для веществ молекулярной природы и не слишком подходит для описания химических связей в соединениях кластерной, ионной, кристаллической природы и т.п.

Индексы в молекулярных формулах веществ отражают количество атомов элементов, которые входят в их состав. Правильно расставить индексы помогает знание валентности элементов. Таким же образом, глядя на молекулярную формулу и индексы, вы можете назвать валентности входящих в состав элементов.

Вы выполняете такие задания на уроках химии в школе. Например, имея химическую формулу вещества, в котором известна валентность одного из элементов, можно легко определить валентность другого элемента.

Для этого нужно только запомнить, что в веществе молекулярной природы число валентностей обоих элементов равны. Поэтому используйте наименьшее общее кратное (соответсвует числу свободных валентностей, необходимых для соединения), чтобы определить неизвестную вам валентность элемента.

Чтобы было понятно, возьмем формулу оксида железа Fe 2 O 3 . Здесь в образовании химической связи участвуют два атома железа с валентностью III и 3 атома кислорода с валентностью II. Наименьшим общим кратным для них является 6.

  • Пример: у вас есть формулы Mn 2 O 7 . Вам известна валентность кислорода, легко вычислить, что наименьше общее кратное – 14, откуда валентность Mn – VII.

Аналогичным образом можно поступить и наоборот: записать правильную химическую формулу вещества, зная валентности входящих в него элементов.

  • Пример: чтобы правильно записать формулу оксида фосфора, учтем валентность кислорода (II) и фосфора (V). Значит, наименьшее общее кратное для Р и О – 10. Следовательно, формула имеет следующий вид: Р 2 О 5 .

Хорошо зная свойства элементов, которые они проявляют в различных соединениях, можно определить их валентность даже по внешнему виду таких соединений.

Например: оксиды меди имеют красную (Cu 2 O) и черную (CuО) окраску. Гидроксиды меди окрашены в желтый (CuОН) и синий (Cu(ОН) 2) цвета.

А чтобы ковалентные связи в веществах стали для вас более наглядными и понятными, напишите их структурные формулы. Черточки между элементами изображают возникающие между их атомами связи (валентности):

Характеристики валентности

Сегодня определение валентности элементов базируется на знаниях о строении внешних электронных оболочек их атомов.

Валентность может быть:

  • постоянной (металлы главных подгрупп);
  • переменной (неметаллы и металлы побочных групп):
    • высшая валентность;
    • низшая валентность.

Постоянной в различных химических соединениях остается:

  • валентность водорода, натрия, калия, фтора (I);
  • валентность кислорода, магния, кальция, цинка (II);
  • валентность алюминия (III).

А вот валентность железа и меди, брома и хлора, а также многих других элементов изменяется, когда они образуют различные химические соедения.

Валентность и электронная теория

В рамках электронной теории валентность атома определеяется на основании числа непарных электронов, которые участвуют в образовании электронных пар с электронами других атомов.

В образовании химических связей участвуют только электроны, находящиеся на внешней оболочке атома. Поэтому максимальная валентность химического элемента – это число электронов во внешней электронной оболочке его атома.

Понятие валентности тесно связано с Периодическим законом, открытым Д. И. Менделеевым. Если вы внимательно посмотрите на таблицу Менделеева, легко сможете заметить: положение элемента в перодической системе и его валентность неравзрывно связаны. Высшая валентность элементов, которые относятся к одной и тоже группе, соответсвует порядковому номеру группы в периодичнеской системе.

Низшую валентность вы узнаете, когда от числа групп в таблице Менделеева (их восемь) отнимете номер группы элемента, который вас интересует.

Например, валентность многих металлов совпадает с номерами групп в таблице периодических элементов, к которым они относятся.

Таблица валентности химических элементов

Порядковый номер

хим. элемента (атомный номер)

Наименование

Химический символ

Валентность

1 Водород / Hydrogen

Гелий / Helium

Литий / Lithium

Бериллий / Beryllium

Углерод / Carbon

Азот / Nitrogen

Кислород / Oxygen

Фтор / Fluorine

Неон / Neon

Натрий / Sodium

Магний / Magnesium

Алюминий / Aluminum

Кремний / Silicon

Фосфор / Phosphorus

Сера / Sulfur

Хлор / Chlorine

Аргон / Argon

Калий / Potassium

Кальций / Calcium

Скандий / Scandium

Титан / Titanium

Ванадий / Vanadium

Хром / Chromium

Марганец / Manganese

Железо / Iron

Кобальт / Cobalt

Никель / Nickel

Медь / Copper

Цинк / Zinc

Галлий / Gallium

Германий /Germanium

Мышьяк / Arsenic

Селен / Selenium

Бром / Bromine

Криптон / Krypton

Рубидий / Rubidium

Стронций / Strontium

Иттрий / Yttrium

Цирконий / Zirconium

Ниобий / Niobium

Молибден / Molybdenum

Технеций / Technetium

Рутений / Ruthenium

Родий / Rhodium

Палладий / Palladium

Серебро / Silver

Кадмий / Cadmium

Индий / Indium

Олово / Tin

Сурьма / Antimony

Теллур / Tellurium

Иод / Iodine

Ксенон / Xenon

Цезий / Cesium

Барий / Barium

Лантан / Lanthanum

Церий / Cerium

Празеодим / Praseodymium

Неодим / Neodymium

Прометий / Promethium

Самарий / Samarium

Европий / Europium

Гадолиний / Gadolinium

Тербий / Terbium

Диспрозий / Dysprosium

Гольмий / Holmium

Эрбий / Erbium

Тулий / Thulium

Иттербий / Ytterbium

Лютеций / Lutetium

Гафний / Hafnium

Тантал / Tantalum

Вольфрам / Tungsten

Рений / Rhenium

Осмий / Osmium

Иридий / Iridium

Платина / Platinum

Золото / Gold

Ртуть / Mercury

Талий / Thallium

Свинец / Lead

Висмут / Bismuth

Полоний / Polonium

Астат / Astatine

Радон / Radon

Франций / Francium

Радий / Radium

Актиний / Actinium

Торий / Thorium

Проактиний / Protactinium

Уран / Uranium

H I

(I), II, III, IV, V

I, (II), III, (IV), V, VII

II, (III), IV, VI, VII

II, III, (IV), VI

(I), II, (III), (IV)

I, (III), (IV), V

(II), (III), IV

(II), III, (IV), V

(II), III, (IV), (V), VI

(II), III, IV, (VI), (VII), VIII

(II), (III), IV, (VI)

I, (III), (IV), V, VII

(II), (III), (IV), (V), VI

(I), II, (III), IV, (V), VI, VII

(II), III, IV, VI, VIII

(I), (II), III, IV, VI

(I), II, (III), IV, VI

(II), III, (IV), (V)

Нет данных

Нет данных

(II), III, IV, (V), VI

В скобках даны те валентности, которые обладающие ими элементы проявляют редко.

Валентность и степень окисления

Так, говоря о степени окисления, подразумевают, что атом в веществе ионной (что важно) природы имеет некий условный заряд. И если валентность – это нейтральная характеристика, то степень окисления может быть отрицательной, положительной или равной нулю.

Интересно, что для атома одного и того же элемента, в зависимости от элементов, с которыми он образует химическое соединение, валентность и степень окисления могут совпадать (Н 2 О, СН 4 и др.) и различаться (Н 2 О 2 , HNO 3).

Заключение

Углубляя свои знания о строении атомов, вы глубже и подробнее узнаете и валентность. Эта характеристика химических элементов не является исчерпывающей. Но у нее большое прикладное значение. В чем вы сами не раз убедились, решая задачи и проводя химические опыты на уроках.

Эта статья создана, чтобы помочь вам систематизировать свои знания о валентности. А также напомнить, как можно ее определить и где валентность находит применение.

Надеемся, этот материал окажется для вас полезным при подготовке домашних заданий и самоподготовке к контрольным и экзаменам.

blog.сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.

Понятие валентность происходит от латинского слова «valentia» и было известно еще в середине XIX века. Первое «пространное» упоминание валентности было еще в работах Дж. Дальтона, который утверждал, что все вещества состоят из атомов, соединенных между собой в определенных пропорциях. Затем, Франкланд ввел само понятие валентности, которое нашло дальнейшее развитие в трудах Кекуле, который говорил о взаимосвязи валентности и химической связи, А.М. Бутлерова, который в своей теории строения органических соединений связывал валентность с реакционной способностью того или иного химического соединения и Д.И. Менделеева (в Периодической системе химических элементов высшая валентность элемента определяется номером группы).

ОПРЕДЕЛЕНИЕ

Валентность – это количество ковалентных связей, которое способен образовывать атом в соединении с ковалентной связью.

Валентность элемента определяется числом неспаренных электронов атоме, поскольку они принимают участие в образовании химической связи между атомами в молекулах соединений.

Основное состояние атома (состояние с минимальной энергией) характеризуется электронной конфигурацией атома, которая соответствует положению элемента в Периодической системе. Возбужденное состояние – это новое энергетическое состояние атома, с новым распределением электронов в пределах валентного уровня.

Электронные конфигурации электронов в атоме можно изобразить не только в виде электронных формул, но и с помощью электронно-графических формул (энергетических, квантовых ячеек). Каждая ячейка обозначает орбиталь, стрелка – электрон, направление стрелки (вверх или вниз) показывает спин электрона, свободная клетка – свободная орбиталь, которую может занимать электрон при возбуждении. Если в ячейке 2 электрона, такие электроны называются спаренными, если электрон 1 – неспаренный. Например:

6 C 1s 2 2s 2 2p 2

Орбитали заполняют следующим образом: сначала по одному электрону с одинаковыми спинами, а затем по второму электрону с противоположными спинами. Поскольку на 2p подуровне три орбитали с одинаковой энергией, то каждый из двух электронов занял по одной орбитали. Одна орбиталь осталась свободной.

Определение валентности элемента по электронно-графическим формулам

Валентность элемента можно определить по электронно-графическим формулам электронных конфигураций электронов в атоме. Рассмотрим два атома – азота и фосфора.

7 N 1s 2 2s 2 2p 3

Т.к. валентность элемента определяется числом неспаренных электронов, следовательно, валентность азота равна III. Поскольку у атома азота нет свободных орбиталей, для этого элемента невозможно возбужденное состояние. Однако III, не максимальная валентность азота, максимальная валентность азота V и определяется номером группы. Поэтому, следует запомнить, что с помощью электронно-графических формул не всегда можно определить высшую валентность, а также все валентности, характерные для этого элемента.

15 P 1s 2 2s 2 2p 6 3s 2 3p 3

В основном состоянии атом фосфора имеет 3 неспаренных электрона, следовательно, валентность фосфора равна III. Однако, в атоме фосфора имеются свободные d-орбитали, поэтому электроны, находящиеся на 2s – подуровне способны распариваться и занимать вакантные орбитали d-подуровня, т.е. переходить в возбужденное состояние.

Теперь атом фосфора имеет 5 неспаренных электронов, следовательно для фосфора характерна и валентность, равная V.

Элементы, имеющие несколько значений валентности

Элементы IVA – VIIA групп могут иметь несколько значений валентности, причем, как правило, валентность изменяется ступенчато на 2 единицы. Такое явление обусловлено тем, что в образовании химической связи электроны участвуют попарно.

В отличие от элементов главных подгрупп, элементы В-подгрупп, в большинстве соединений не проявляют высшую валентность, равную номеру группы, например, медь и золото. В целом, переходные элементы проявляют большое разнообразие химических свойств, которое объясняется большим набором валентностей.

Рассмотрим электронно-графические формулы элементов и установим, в связи с чем элементы имеют разные валентности (рис.1).


Задания: определите валентные возможности атомов As и Cl в основном и возбужденном состояниях.