Бактерии сапротрофы играют важную роль природе. Бактерии сапротрофы. Физиологические процессы бактерий сапротрофов

Сапрофитные бактерии – одна из самых многочисленных групп микроорганизмов. Если говорить о месте сапротрофов в экологических системах, то они всегда вытесняют гетеротрофов. Гетеротрофы – это организмы, которые сами не могут производить органические соединения, а только заняты переработкой уже имеющегося материала.

В группе сапротрофов есть представители многих семейств и родов бактерий:

  • Morganella;
  • Klebsiella;
  • Bacillus;
  • Клостридии (Clostridium) и многие другие.

Сапротрофы населяют все среды, в которых присутствует органика: многоклеточные организмы (растения и животных), почвы, они находятся в пыли и во всех видах водоемов (кроме горячих источников).

Очевидным для человека результатом действия сапрофитных организмов является образование гнили – так выглядит процесс их питания. Именно гниение органического материала – свидетельство того, что за дело взялись сапротрофы.

В процессе гниения из органических соединений высвобождается и возвращается в почву азот. Реакции сопровождаются характерным сероводородным или аммиачным запахом. По этому запаху можно идентифицировать начало процесса гнилостного разложения отмершего организма либо его тканей.

Минерализация органического азота (аммонификация) и его преобразование в неорганические соединения – такая ключевая роль в природе отведена сапрофитным организмам.

Физиологические процессы

Сапротрофы, как одна из самых многочисленных групп, имеют в своих рядах представителей с самыми разными физиологическими потребностями:

  1. Анаэробы. Для примера можно рассмотреть кишечную палочку, которая осуществляет свои жизненные процессы без участия кислорода, хотя может жить в кислородной среде.
  2. Аэробы – бактерии, участвующие в разложении органики в присутствии кислорода. Так, в свежем мясе присутствуют гнилостные диплококки и трехчленистые бактерии. На начальном этапе содержание аммиака (продукта жизнедеятельности гнилостной микрофлоры) в мясе не превышает 0,14%, а в уже подгнившем – 2% и более.
  3. Пример спорообразующих бактерий – Клостридии.
  4. Неспорообразующие бактерии – кишечная и синегнойная палочки.

Несмотря на многообразие физиологических групп, объединенных по признакам сапрофитности, конечные продукты деятельности этих бактерий имеют практически одинаковый состав:

  • трупные яды (биогенные амины с сильным неприятным трупным запахом, как таковая токсичность этих соединений невелика);
  • ароматические соединения, такие как скатол и индол;
  • сероводород, тиолы, диметилсульфоксид и т.д.

Из всех перечисленных продуктов гниения самыми опасными и токсичными для человека являются последние (сероводород, тиолы и диметилсульфоксид). Именно они вызывают сильнейшие отравления, вплоть до летального исхода.

Взаимодействие


Но как только в кишечнике перестает вырабатываться необходимое количество молочной кислоты, появляются благоприятные условия для питания, роста и размножения гнилостной микрофлоры, которая сразу начинает отравлять человека продуктами своей жизнедеятельности, что влечет сильнейшие поражения.

probakterii.ru

Основные свойства сапрофитов

Сапротрофы являются гетеротрофными организмами, которые в качестве питательных веществ используют продукты жизнедеятельности, разложения, гниения других живых организмов. Процесс поглощения пищи происходит за счет выделения на потребляемый продукт специального фермента, который его расщепляет.

Питание - это процесс накопления энергии и питательных веществ. Для нормального существования бактериям необходим ряд питательных веществ, таких как:

  • азот (в виде аминокислот);
  • белки;
  • углеводы;
  • витамины;
  • нуклеотиды;
  • пептиды.

В лабораторных условиях для размножения сапрофитов в качестве питательных сред используют автолизат из дрожжей, сыворотку из молока, мясные гидролизаты, некоторые растительные экстракты.

Показательным процессом наличия в продуктах сапрофитов является образование гнили. Опасность составляют продукты жизнедеятельности этих микроорганизмов, так как являются достаточно токсичными. Сапрофиты являются своего рода санитарами в окружающей среде.

Основные представители сапрофитов:

  1. Синегнойная палочка (Pseudomonas);
  2. Кишечные палочки (Proteus, Escherichia);
  3. Morganella;
  4. Klebsiella;
  5. Bacillus;
  6. Клостридии (Clostridium);
  7. некоторые виды грибов (Реnicilum и др.)

Физиологические процессы бактерий сапротрофов

Среди этих микроорганизмов можно выделить:

  • анаэробов (кишечная палочка, она может жить в кислородосодержащей среде, но все процессы жизнедеятельности проходят без участия кислорода);
  • аэробов (гнилостные бактерии, которые задействуют кислород в процессах своей жизнедеятельности);
  • спорообразующие бактерии (род Клостридии);
  • неспорообразующие микроорганизмы (кишечная палочка Escherichia coli и синегнойная палочка Pseudomonas aeruginosa).

Практически все разнообразие сапрофитов в результате своей жизнедеятельности производит различные трупные яды, сероводород, циклические ароматические соединения (например, индол). Наиболее опасными для человека являются сероводород, тиол и диметилсульфоксид, которые могут привести к сильным отравлениям и даже смерти.

Поскольку по своей природе эти виды достаточно сложно отличить, то возникла следующая классификация:

Факультативные сапрофиты

Роль сапротрофов в жизни человека

Этот вид бактерий играет очень весомую роль в круговороте природы. В то же время предметом для их питания служат вещи, которые в той или иной мере важны для человека.

Сапротрофы играют очень большую роль в переработке органических остатков. Так как любой организм в конце своего жизненного пути погибает, питательная среда для этих микроорганизмов будет существовать непрерывно. Сапрофиты вырабатывают в виде продуктов своей жизнедеятельности множество составляющих веществ, необходимых для питания других организмов (процессы брожения, преобразования в природе серы, азота, фосфорных соединений и т.д.).

proparazites.ru

Как мы отмечали, наряду с растениями и животными, благодаря которым создается первичная и соответственно вторичная продукция, чрезвычайно важная роль в биогеоценозе и биологическом круговороте принадлежит разнообразным организмам, относящимся к числу сапротрофов. Они питаются детритом, т. е. продуктами разложения мертвых организмов, и обеспечивают минерализацию этих веществ. Помимо биологической деструкции сапротрофные организмы участвуют и в других процессах, жизненно важных для растений, животных и биогеоценоза в целом.

К числу сапротрофов прежде всего относятся разнообразные микроорганизмы, главным образом грибы (в том числе плесени), гетеротрофные спорообразующие и неспорообразующие бактерии, актиномицеты, водоросли, почвенные простейшие (амебы, инфузории, бесцветные жгутиковые). Во многих экосистемах особенно важны биоредукторы из числа животных-сапрофагов, причем не только упомянутых микроскопических, но и макроскопических (например, дождевые черви).


Следует также иметь в виду, что для разложения мертвых органических веществ немалое значение имеет жизнедеятельность ряда позвоночных животных, хотя они отнюдь не принадлежат к сапрофагам. Таким образом, в биологической редукции участвуют не только отдельные группы организмов, но вся их совокупность, или, как ее называют, «биота».

Наконец, нельзя забывать, что процесс разложения и минерализации, хотя и носит биогенный характер, однако зависит и от абиотических условий, поскольку последние создают среду для деятельности организмов-редуцентов.

Сапрофиты в основном концентрируются в почве. Количество обитающих в ней микроорганизмов чрезвычайно велико. В 1 г подзолистой почвы в Московской области насчитывается 1,2-1,5 млн экз. бактерий, а в зоне ризосферы, т. е. прикорневой зоне растений - до 1 млрд экз. Численность грибов и актиномицетов составляет сотни тысяч и миллионы особей. Биомасса грибов, актиномицетов и водорослей в поверхностном горизонте почвы может достигать 2-3 т/га, а биомасса бактерий - 5-7 т/га. Эти цифры говорят сами за себя.

По справедливому заключению специалистов животные-сапрофаги играют очень существенную роль в функционировании блока экосистемы «растение - почва».

Участвуя в минерализации растительного опада, сапрофаги способствуют вовлечению в биологический круговорот различных органических соединений и химических элементов, что обеспечивает очередной цикл продуцирования органического вещества.


Биоценотическая роль данной группы животных не ограничивается функцией биоредукторов. Они, особенно дождевые черви, имеют большое значение для образования и трансформации почв и, наконец, представляют важный кормовой ресурс для многих позвоночных животных - крота, землероек, кабана, барсука, вальдшнепа, дроздов и других зверей и птиц. Добывая дождевых червей и прочих почвенных беспозвоночных, они ворошат лесную подстилку, копаются в земле и тем способствуют механическому разрушению растительного опада и последующей его минерализации.

Для этого процесса немаловажное значение имеет большое количество экскрементов, извергаемых всеми животными. Здесь дело не ограничивается обогащением почвы органическими веществами. Весьма важно, что экскременты становятся субстратом для развития огромной массы микроорганизмов и мелких членистоногих биоредуцентов, которые, в свою очередь, тоже извергают множество экскрементов. Известны почвы, полностью состоящие из экскрементов многоножек Glomeris, отличающихся необычайной прожорливостью. Подсчитано, что одна из многоножек (каемчатая клубовидка) на лугах поедает всю гниющую растительную массу, которую здесь ежегодно образуют растения.

Количество бактерий особенно возрастает в ризосфере. Оно превышает количество микробов в окружающей почве в сотни и даже в тысячи раз. Численность бактерий и их видовой состав сильно изменяются в зависимости от видов растений и химизма их корневых выделений, не говоря о почвенно-климатических условиях.

Химической спецификой корневых выделений высших растений обусловлены связи, существующие между определенными видами растений и грибов-микоризообразователей, вроде подберезовика, образующего микоризу на корнях березы, или подосиновика, органически связанного с осиной. Микоризные грибы чрезвычайно полезны для высших растений, поскольку снабжают их азотом, минеральными и органическими веществами. Весьма важную положительную роль в жизни высших растений играют свободноживущие и клубеньковые бактерии-азотфиксаторы, связывающие атмосферный азот и делающие его доступным для высших растений. Вместе с тем, в составе почвенной микофлоры имеется немало вредных видов, продуцирующих токсичные вещества, которые подавляют рост и развитие растений.

Ни один из видов сапротрофов не способен полностью осуществить разложение мертвого тела. Но в природе насчитывается большое число видов микроорганизмов-редуцентов. Роль их в процессе разложения различна и во многих наземных сообществах они функционально сменяют друг друга, пока не наступит полная минерализация мертвой органической субстанции. Так, в разложении растительных остатков последовательно участвуют: плесневые грибы и неспорообразующие бактерии → спорообразующие бактерии → целлюлозные миксобактерии → актиномицеты. Среди них одни микроорганизмы постоянно разлагают мертвые существа до уровня низкомолекулярных органических веществ, которые они, будучи сапрофитами, используют сами. Другие биоредуценты преобразуют мертвые ткани в минеральные вещества, чьи химические соединения доступны для усвоения зелеными растениями. Бактерии, по-видимому, играют главную роль в разложении мягких тканей животных, а грибы важнее для разрушения древесины. При этом различные части растений и животных разрушаются с неодинаковой скоростью.

В результате использования разными видами организмов разлагающихся тканей растений и животных возникает своеобразная трофическая система - «детритный тип» потока энергии, в котором происходит накопление и разложение мертвого вещества. Детритные цепи питания весьма широко распространены в биосфере. Обычно они функционируют бок о бок с цепями питания «пастбищного типа», начинающимися с зеленых растений и фитофагов. Тем не менее и в этих случаях в биоценозе преобладает тот или иной из упомянутых типов, в частности им может быть детритный. Так, по некоторым подсчетам, в биотическом сообществе морского мелководья лишь около 30% всей энергии проходит через детритные цепи, тогда как в экосистеме леса со значительной фитомассой и сравнительно небольшой зоомассой через этого рода цепи проходит до 90% потока энергии. В некоторых специфических экосистемах (например, в глубинах океана и под землей), где из-за отсутствия света существование хлорофиллоносных растений невозможно, вообще все цепи питания начинаются с потребителей детрита.

В большинстве детритных пищевых цепей наблюдается хорошо взаимно согласованное функционирование обеих групп сапротрофов; животные-сапрофаги своей деятельностью, направленной на расчленение мертвых растений и животных, создают условия для интенсивной «работы» сапрофитов - бактерий, грибов и тр.

В этом сложном, взаимосвязанном процессе надо специально подчеркнуть важную роль животных, тем более что она явно недооценивалась многими учеными, которые ограничивались соответствующими подсчетами, касающимися только дождевых червей и некоторых других беспозвоночных. Между тем результаты последних исследований продемонстрировали весьма существенное значение для образования и разложения детрита деятельности млекопитающих, в частности мышевидных грызунов. В колониях обыкновенных полевок (рис. 124) в Центрально-Черноземном заповеднике остатки огрызенных трав сохнут и минерализуются быстрее, чем растения, постепенно отмирающие на корню. Полевки удобряют почву своими трупами и выделениями и тем способствуют развитию микроорганизмов. Их экскременты почти целиком минерализуются в течение, первых двух лет. В колониях полевок возникает особый микроклимат, что сказывается на интенсивности биотических процессов и скорости абиогенной минерализации растительного опада, что особенно ощутимо в степных биогеоценозах, поскольку там деструкционные процессы контролируются главным образом климатическими факторами. В конечном счете, деятельность полевок приводит к резкому нарушению баланса накопления и минерализации опада, так что в течение лета и осени разрушение мертвых остатков преобладает над их накоплением.

Рис. 124. Обыкновенная полевка. Фото

Чрезвычайно важным проявлением воздействия сапротрофов-биоредуцентов на органические остатки надо признать те процессы, которые происходят в почве и влекут за собой ее обогащение питательными веществами.

www.medical-enc.ru

Ксилотрофы . Разложение древесины - одно из основных звеньев биологического круговорота веществ в природе.

В зависимости от вида разлагаемых соединений грибы делят на две группы.

1. Грибы используют только углеводный комплекс, в частности целлюлозу, а лигнин не расщепляется. Такой вид деструкции (разложения) называется бурой или деструктивной гнилью. Древесина теряет прочность и рассыпается на отдельные кубики. Представители: трутовик окаймленный (Fomitopsis pinicola), трутовик чешуйчатый (Polyporus squamosus), дубовая губка (Daedalea quercina) и др.

2. Грибы используют преимущественно лигнин. При этом древесина расщепляется на отдельные волокна белого цвета. Такая гниль называется белой или коррозионной. Представители: опенок осенний (Armillaria mellea), трутовик настоящий (Fomes fomentarius), трутовик плоский (Ganoderma applanatum), вешенка (Pleurotus).

Наибольшее количество древесины необходимо грибам в период образования спор. В среднем для образования одного плодового тела гриба нужно столько азота, сколько содержится его в 6 кг древесины. Для образования спор одним плодовым телом трутовика плоского в течение сезона необходимо 35 кг древесины. Потребности настоящего трутовика еще больше. Для образования спор одним плодовым телом в течение 20 дней необходимо 41 кг древесины. Попутно с разложением древесины происходит и другой важный процесс - почвообразовательный, так как в гифах грибов в результате разложения лигнина накапливаются темноокрашенные гуминоподные соединения.

Разложение древесины идет поэтапно, разрушение веществ - постепенно, и одни виды замещаются другими (сукцессии). Согласно схеме С. А. Ваксмана этот процесс может быть представлен следующими этапами.

1. Быстрорастущие группы зигомицетов совместно с бактериями используют водорастворимые соединения древесины.

2. Происходит утилизация полисахаридов, таких как крахмал, гемицеллюлоза, сумчатыми и анаморфными грибами.

3. Разложение лигнина дереворазрушающими грибами. Сначала поселяются афиллофороидные (в частности, трутовые) базидиомицеты, а затем агарикоидные базидиомицеты и гастеромицеты, завершающие разложение древесины.

Подстилочные сапротрофы . Само название говорит о местонахождении и функциональном значении грибов этой экологической группы. Разложение подстилки - очень важный процесс в жизни экосистем. Известно, что подстилка в лесах на 25…60% состоит из листьев и хвои, отличающихся от древесных остатков по химическому составу. В разложении подстилки участвуют почти все таксономические группы грибов, но доминируют аскомицеты, зигомицеты, анаморфные грибы. Большой интерес вызывают пигментированные анаморфные грибы. Порой их бывает 70…90 и даже 100% . Из макромицетов обычны грибы рода негниючник (Marasmius), мицена (Mycena), коллибия (Collybia), говорушка (Clitocybe), земляная звезда (Geastrum). Мицелий подстилочных сапротрофов выдерживает резкие колебания температуры и влажности.

Процессы, протекающие при разложении подстилки:

  • минерализация азотистых соединений. В этом процессе участвуют бактерии - аммонификаторы и грибы родов мукор, аспергилл, триходерма. Происходит разложение белков. Главный итог - превращение соединенного азота в свободный аммиак: N-NH 3 ;
  • разложение углеродных соединений до СO 2 и Н 2 O осуществляется также определенными группами бактерий и грибов.

Гумусовые сапротрофы . Гумусовые сапротрофы образуют группу видов, участвующих в разложении гумуса почвы. Мицелий их расположен в нижнем слое лесной подстилки и в верхнем горизонте почвы, но они могут расти на совершенно оголенных, лишенных подстилки участках. В основном это агарикоидные базидиомицеты и гастеромицеты. Встречаются эти грибы на открытых пространствах, например гриб-зонтик высокий (Macrolepiota procera), гриб-зонтик краснеющий (Chlorophyllum rhacodes), шампиньоны (Agaricus), земляные звезды (Geastrum), дождевики (Lycoperdon).

Карботрофы . Карботрофы поселяются на старых кострищах, пожарищах, занимают пирогенные местообитания. С одной стороны, их можно рассматривать как результат биохимической адаптации к пирогенным местообитаниям. С другой, это уход от конкурентов в недоступную для них экологическую нишу. Субстрат представляет собой смесь минеральных частиц почвы с обуглившимися остатками древесины. Такая питательная среда содержит чистый углерод с небольшой примесью (2…3%) полимерных углеводов.

Наблюдается четкая колонизация субстрата. Через две недели появляются термофильные виды аскомицетов, например сордария (Sordaria), пиронема (Pyronema), потом - виды с антагонистической активностью, например виды рода пезиза (Peziza). На последних этапах разрушения угольного субстрата растут чешуйчатка угольная (Pholiota carbonaria), миксомфалия гаревая (Myxomphalia), псатирелла перистая (Psathyrella pennata). К этому времени обычно восстанавливается микробиота почв. Таким образом, карботрофы - специфическая группа грибов, функционально направленная на подготовку субстрата для дальнейшего его заселения высшими растениями.

Копротрофы . Копротрофы утилизируют органические вещества, находящиеся в экскрементах животных (копрос - навоз). Субстрат богат органическими веществами. Для них этот источник питания является единственным и потому определяет их распространение в природе. Копротрофы чаще встречаются на навозе домашнего скота, чем на экскрементах диких животных. Это обусловило их приуроченность к населенным пунктам.

Грибы, поселяющиеся на навозе, имеют специфику. Прежде всего, споры грибов должны быть устойчивы к повышенным температурам и воздействию пищеварительной системы животных. В основном к копротрофам относятся грибы семейства мукоровые (мукор, пилоболюс), а также макроскопические грибы - навозник (Coprinus), панеолюс (Panaeolus). Обитание на специфичном субстрате привело к интересным особенностям, способствующим распространению спор:

  • споры с силой выбрасываются из плодовых тел (навозник) или от спорангиеносца (пилоболюс);
  • споровая масса выносится над субстратом (мукор);
  • споры или плодовые тела имеют придатки и разносятся животными и птицами (хэтомиум, лофотрихум).

Микотрофы . Разложение и минерализация грибных остатков в природе осуществляется грибами - микотрофами, как микромицетами, так и макромицетами. Микотрофы распространены повсеместно, в разных климатических зонах. Довольно редко в лесах, на плодовых телах сыроежковых грибов растут вторым этажом шляпочные грибы, например астерофора дождевиковидная (Asterophora lycoperdoides).

Вывод. Судя по характеристике экологических групп грибов, они приспособились к обитанию во всех сообществах, находятся в тесной связи с другими организмами и являются активными участниками почвообразовательного процесса, а также круговорота углерода, азота и фосфора в природе.

www.activestudy.info

Редуценты (также деструкторы, сапротрофы, сапрофиты, сапрофаги) - микроорганизмы (бактерии и грибы) , разрушающие отмершие остатки живых существ, превращающие их в неорганические соединения и простейшие органические соединения.
От детритофагов (животных и протистов) редуценты отличаются прежде всего тем, что не оставляют твердых непереваренных остатков (экскрементов) . Животных-детритофагов в экологии традиционно относят к консументам (см. , например, Бигон, Харпер, Таунсенд, 1989). В то же время все организмы выделяют углекислый газ и воду, а часто и другие неорганические (аммиак) или простые органические (мочевина) молекулы и таким образом принимают участие в разрушении (деструкции) органического вещества.
Экологическая роль редуцентов
Редуценты возвращают минеральные соли в почву и воду, делая их доступными для продуцентов-автотрофов, и таким образом замыкают биотический круговорот. Поэтому экосистемы не могут обходиться без редуцентов (в отличие от консументов, которые, вероятно, отсутствовали в экосистемах в течение первых 2 млрд лет эволюции, когда экосистемы состояли из одних прокариот) .
Абиотические и биотические факторы регуляции экосистем
Исследованиями Н. И. Базилевич и др. (1993) установлено, что в наземных экосистемах различают две группы факторов, регулирующих деструкционные процессы, играющие весьма существенную роль в биологическом круговороте.
Это прежде всего абиотические факторы - выщелачивание растворимых соединений, фотохимическое окисление органического вещества и реакции его механического разрушения вследствие замерзания - оттаивания.
Эти факторы наиболее проявляются в надземных ярусах экосистем, а биотические факторы - в почвенном. Абиотические факторы деструкции характерны для аридных и семиаридных ландшафтов (пустыни, степи, саванны) , а также для континентальных высокогорий и полярных ландшафтов.
Биотические факторы деструкции - это в первую очередь сапротрофные организмы (беспозвоночные и позвоночные животные, микроорганизмы) , населяющие почву и подстилку, причём ведущим фактором в наземных ландшафтах служит главным образом почвенная микрофлора.


Гетеротрофный процесс, происходящий в БГЦ в рамках всей биогеосферы приблизительно уравновешивает автотрофное накопление вещества. В ходе дыхания являющегося процессом биологического окисления, высвобождается энергия. На основе дыхания существуют пищевые цепи сапрофагов.

Различают три формы дыхания:

аэробное дыхание-окислитель(акцептор) - кислород;

анаэробное дыхание имеет два типа:

Когда окислителем служит неорганическое вещество

Когда акцептор - органическое в-во.

С помощью анаэробного дыхания осуществляют свой обмен бактерии, дрожжи, плесневые грибы и некоторые простейшие. Иногда анаэробное брожение является важнейшим компонентом экосистемы. Например, благодаря деятельности сульфатредуцирующих бактерий существует стабильный баланс Черного моря, возраст которого всего лишь 2000 лет. В биологическом отношении это море очень высокопродуктивно – годовой объем продукции составляет 1х10 14 г на сухой вес, что соответствует продуктивности порядка 100 г углерода на 1 м 2 поверхности в год. А так как перемешивание вод в Черном море очень слабо в виду слабой интенсивности течений, то кислорода для биологических процессов хватает только в поверхностных водах. В глубине его недостаточно и существование биологических популяций невозможно. Ниже 50 м глубины концентрация кислорода начинает катастрофически убывать и достигает) отметки уже на глубине 175 м. Здесь начинается деятельность сульфатредуцирующих бактерий, которые разлагают органическое вещество, поступающее сверху, выделяя сероводород и углекислый газ. Благодаря этому воды Черного моря на глубине 200 м и ниже насыщены сероводородом.

В болотных биогеоценозах велика роль деятельности метановых бактерий, которые путем восстановления органического углерода или углерода,содержащегося в карбонатах разрушают органические соединения с образованием метана. Метан,или болотный газ поднимается на поверхность и окисляется,иногда загорается образуя в ночном воздухе странные светящиеся облака причудливых фигур. Эти бактерии существуют и в желудках жвачных животных, где они разлагают растительные корма.

Анаэробные процессы разложения идут медленнее, чем аэробные. Однако в природе они имеют большое значение, т. к. они проходят в труднодоступных местах и являются дополнительными поставщиками вещества и энергии, делая их доступными для анаэробов. Так, в результате деятельности сульфатредуцирующих бактерий сероводород и углекислота поступают в поверхностные воды, где они используются фитопланктоном.

Биологическое разложение идет всегда в ходе питания, постепенно, так как ни один из сапротрофов не может осуществить разложение до конца. Различают три стадии биологического разложения:

1. Измельчение детрита путем физического или биологического воздействия;

2. Образование гумуса и высвобождение растворимых органических веществ

3. Медленная минерализация гумуса.

При этом подтверждается общая стратегия природы, есть пирог так, чтобы он всегда оставался целым.

1 этап разложения - измельчение детрита - происходит в результате питания фитофагов. Сюда относятся травоядные позвоночные и беспозвоночные организмы.

А. Травоядные, потребляя растительность переводят её в жиры, белки и сахара животного происхождения. Эти вещества разлагаются очень быстро, если сами животные превратятся в трупы. Так, Одум проделал опыт, поместив в пластиковые мешки трупы крабов и для контроля - болотную траву. За 10 месяцев крабы разложились полностью, а трава лишь на 60%.

Б. Неусвоенная травоядными часть пищи проходя через пищеварительный тракт выбрасывается наружу в виде экскрементов. Эта часть детритной органики становится достоянием звеньев пищевой цепи копрофагов. Среди копрофагов-членистоногих различают эктокопрофагов, которые развиваются в самой навозной куче и телекопрофагов, которые развиваются вне навозной кучи. Это обычно жуки, которые делают из навоза шарики, укатывают их на значительное расстояние и хоронят их в почву. Систематически они принадлежат к семейству геотрупидов и скарабеидов. В этих захороненных шариках навоза они выводят своих личинок. Захоронение навоза имеет благоприятное значение для природы – повышает плодородие почв, увеличивает рост пастбищных растений. Кроме этого подавляются популяции заразных мух, которые лишаются благоприятных мест откладки яиц, разлагает гельминтов крупного рогатого скота.

В. Насекомые копрофаги, употребляя навоз и пропуская его сквозь свой кишечник увеличивают степень его фрагментарности. Экскременты копрофагов легко перерабатываются бактериальной флорой, на них хорошо развиваются различные грибки. Среда экскрементов навозных беспозвоночных имеет высокую фосфатазную активность. Поэтому есть выражение «фекальный фактор копрофагов», который имеет немаловажное значение в развитии микрофлоры почвы.

В измельчении материала играют большое значение многие почвенные беспозвоночные. В почвенной фауне особо выделяются две группы беспозвоночных - членистоногие и кольчатые черви.

Членистоногих почв делят на макрочленистоногих и микрочленистоногих. Макрочленистоногие – размером более 2 мм – мокрицы, жуки, многоножки, двукрылые – в основном детритояды и их хищники. Микрочленистоногие – в основном клещи и ногохвостки – также детритояды. Многие детритофаги не могут сами переваривать целлюлозу. В этом случае, они прибегают к помощи микрофлоры. Так, личинки жуков скарабеидов размножают бактерии в своем кишечнике. Бактерии питаются навозом и размножаются, чем и питаются личинки. С другой стороны, в шарике навоза развиваются аммонифицирующие бактерии, которыми личинки также питаются. Многие детритофаги выделяют в детрит со своими экскрементами белки и ростовые вещества, которые стимулируют рост микроорганизмов. В свою очередь уничтожая бактерии, они стимулируют ускоренный рост бактериальной популяции.

Кольчатые черви - это тип, который насчитывает 8000 видов, из которых особенно важны в почвенной жизни два семейства: люмбрициды и энхитреиды.

Люмбрициды, или настоящие дождевые черви достигают численности до 500 экз. на м 2 . Роль дождевых червей в почвообразовательных процессах впервые придал огромное значение Ч. Дарвин. Он привел огромное количество материала о размерах деятельности червей, о том что они пропускают через свой кишечник всю почву луга за несколько лет. Он нисколько не преувеличил значение червей, скорее даже недооценил, т.к. он исходил из численности червей на 1 га луга 60-133 тыс. экз., тогда как она может достигать до 2 млн на га, а максимально до 20 млн. Подсчитано, что в среднем в год все черви мира выбрасывают на поверхность столько земли, чем можно покрыть всю сушу слоем в три мм.

Энхитреиды величиной от 2 до 45 мм размножаются в почве в огромных количествах-до 150 тыс. на 1 кв.м,



В биологии гетеротрофы - это организмы, получающие питательные вещества вместе с готовой пищей. В отличие от автотрофов гетеротрофы не способны самостоятельно образовывать из неорганических соединений органические вещества.

Общее описание

Примерами гетеротрофов в биологии являются:

  • животные от простейших до человека;
  • грибы;
  • некоторые бактерии.

Строение гетеротрофов предполагает возможность расщепления сложных органических веществ до более простых соединений. В одноклеточных организмах органические вещества расщепляются в лизосомах. Многоклеточные животные поедают пищу ртом и расщепляют её в желудочно-кишечном тракте с помощью ферментов. Грибы поглощают вещества из внешней среды подобно растениям. Органические соединения всасываются вместе с водой.

Виды

По источнику питания гетеротрофы делятся на две группы:

  • консументы - животные, употребляющие в пищу другие организмы;
  • редуценты - организмы, разлагающие органические останки.

По способу питания (поглощения пищи) консументы относятся к фаготрофам (голозоям). В эту группу входят животные, поедающие организмы частями. Редуценты относятся к осмотрофам и поглощаются органические вещества из растворов. К ним относятся грибы и бактерии.

ТОП-4 статьи которые читают вместе с этой

Гетеротрофы могут использовать в пищу живые и неживые организмы.
В связи с этим выделяют:

  • биотрофы - питаются исключительно живыми существами (травоядные и хищные животные);
  • сапротрофы - питаются мёртвыми растениями и животными, их останками и экскрементами.

К биотрофам относятся:

Рис. 1. Биотрофы.

К сапротрофам относятся животные, которые поедают трупы (гиены, грифы, тасманийский дьявол) или экскременты (личинки мух), а также грибы и бактерии, разлагающие органические останки.

Некоторые живые существа способны к фотосинтезу, т.е. одновременно являются и автотрофами, и гетеротрофами. Такие организмы называются миксотрофами. К ним относятся восточная изумрудная элизия (моллюск), цианобактерии, некоторые простейшие, насекомоядные растения.

Консументы

Многоклеточные животные являются консументами нескольких порядков:

  • первого - питаются растительной пищей (корова, заяц, большинство насекомых);
  • второго - питаются консументами первого порядка (волк, сова, человек);
  • третьего - употребляют в пищу консументов третьего порядка и т.д. (змея, ястреб).

Один организм может одновременно являться консументом первого и второго или второго и третьего порядка. Например, ежи в основном питаются насекомыми, но не откажутся от змей и ягод, т.е. ежи одновременно являются консументами первого, второго и третьего порядка.

Рис. 2. Пример пищевой цепочки.

Редуценты

Дрожжи, грибы и бактерии-гетеротрофы подразделяют по способу питания на три вида:

Рис. 3. Грибы-сапрофиты.

Сапрофиты играют важную роль в круговороте веществ и являются редуцентами в пищевой цепочке. Благодаря редуцентам все органические останки разрушаются и превращаются в перегной - питательную среду для растений.

Вирусы не относятся ни к гетеротрофам, ни к автотрофам, т.к. имеют свойства неживой материи. Для размножения им не требуются питательные вещества.

Что мы узнали?

Гетеротрофы питаются готовыми органическими веществами, которые получают за счёт поедания других организмов - растений, грибов, животных. Такие организмы могут питаться живыми организмами или их останками (биотрофы и сапротрофы). К консументам, употребляющим в пищу другие организмы (растения, животные), относится большинство животных. К редуцентам, разлагающим органические останки, относятся грибы и бактерии.

Тест по теме

Оценка доклада

Средняя оценка: 4.5 . Всего получено оценок: 66.

Превращающие органические вещества отмерших организмов в неорганические, обеспечивая круговорот веществ в природе. Термин используется для противопоставления понятию «паразитическое существование бактерий» (см. паразитизм). Для обозначения типа питания бактерий чаще используют термин «гетеротрофные бактерии».

(Источник: «Микробиология: словарь терминов», Фирсов Н.Н., М: Дрофа, 2006 г.)


Смотреть что такое "бактерии сапротрофные" в других словарях:

    Сообщества микроорганизмов чёрных курильщиков являются хемотрофами и являются основными продуцентами на дне океанов Хемотрофы организмы, получающие энергию в результате окислительно восстановительных реакций, окисляя химические соединения,… … Википедия

    Сообщества микроорганизмов чёрных курильщиков являются хемотрофами и основными продуцентами на дне океанов Хемотрофы организмы, получающие энерг … Википедия

    - (также деструкторы, сапротрофы, сапрофиты, сапрофаги) микроорганизмы (бактерии и грибы), разрушающие отмершие остатки живых существ, превращающие их в неорганические и простейшие органические соединения. От животных детритофагов редуценты… … Википедия

    Пищевая цепь Продуценты Консументы Редуценты Редуценты (также деструкторы, сапротрофы, сапрофиты, сапрофаги) микроорганизмы (бактерии и грибы), разрушающие остатки мёртвых растений и животных и превращающие их в неорганические соединения. От… … Википедия

    Пищевая цепь Продуценты Консументы Редуценты Редуценты (также деструкторы, сапротрофы, сапрофиты, сапрофаги) микроорганизмы (бактерии и грибы), разрушающие остатки мёртвых растений и животных и превращающие их в неорганические соединения. От… … Википедия

    Пищевая цепь Продуценты Консументы Редуценты Редуценты (также деструкторы, сапротрофы, сапрофиты, сапрофаги) микроорганизмы (бактерии и грибы), разрушающие остатки мёртвых растений и животных и превращающие их в неорганические соединения. От… … Википедия

    Пищевая цепь Продуценты Консументы Редуценты Редуценты (также деструкторы, сапротрофы, сапрофиты, сапрофаги) микроорганизмы (бактерии и грибы), разрушающие остатки мёртвых растений и животных и превращающие их в неорганические соединения. От… … Википедия

    - (Enterobacteriaceae) – семейство бактерий. Палочки, подвижные и неподвижные, грамотрицательные, аэробы и факультативные анаэробы, гетеротрофы, спор не образуют. Различаются по ферментативной активности, серологически, по чувствительности к… … Словарь микробиологии

Роль и значение бактерий-сапротрофов в природе

Экологические ниши

Сапрофитные бактерии – одна из самых многочисленных групп микроорганизмов. Если говорить о месте сапротрофов в экологических системах, то они всегда вытесняют гетеротрофов. Гетеротрофы – это организмы, которые сами не могут производить органические соединения, а только заняты переработкой уже имеющегося материала.

В группе сапротрофов есть представители многих семейств и родов бактерий:

  • Синегнойная палочка (Pseudomonas);
  • Кишечные палочки (Proteus, Escherichia);
  • Morganella;
  • Klebsiella;
  • Bacillus;
  • Клостридии (Clostridium) и многие другие.

Сапротрофы населяют все среды, в которых присутствует органика: многоклеточные организмы (растения и животных), почвы, они находятся в пыли и во всех видах водоемов (кроме горячих источников).

Очевидным для человека результатом действия сапрофитных организмов является образование гнили – так выглядит процесс их питания. Именно гниение органического материала – свидетельство того, что за дело взялись сапротрофы.

В процессе гниения из органических соединений высвобождается и возвращается в почву азот. Реакции сопровождаются характерным сероводородным или аммиачным запахом. По этому запаху можно идентифицировать начало процесса гнилостного разложения отмершего организма либо его тканей.

Минерализация органического азота (аммонификация) и его преобразование в неорганические соединения – такая ключевая роль в природе отведена сапрофитным организмам.

Физиологические процессы

Сапротрофы, как одна из самых многочисленных групп, имеют в своих рядах представителей с самыми разными физиологическими потребностями:

  1. Анаэробы. Для примера можно рассмотреть кишечную палочку, которая осуществляет свои жизненные процессы без участия кислорода, хотя может жить в кислородной среде.
  2. Аэробы – бактерии, участвующие в разложении органики в присутствии кислорода. Так, в свежем мясе присутствуют гнилостные диплококки и трехчленистые бактерии. На начальном этапе содержание аммиака (продукта жизнедеятельности гнилостной микрофлоры) в мясе не превышает 0,14%, а в уже подгнившем – 2% и более.
  3. Пример спорообразующих бактерий – Клостридии.
  4. Неспорообразующие бактерии – кишечная и синегнойная палочки.

Несмотря на многообразие физиологических групп, объединенных по признакам сапрофитности, конечные продукты деятельности этих бактерий имеют практически одинаковый состав:

  • трупные яды (биогенные амины с сильным неприятным трупным запахом, как таковая токсичность этих соединений невелика);
  • ароматические соединения, такие как скатол и индол;
  • сероводород, тиолы, диметилсульфоксид и т.д.

Из всех перечисленных продуктов гниения самыми опасными и токсичными для человека являются последние (сероводород, тиолы и диметилсульфоксид). Именно они вызывают сильнейшие отравления, вплоть до летального исхода.

Взаимодействие

Но как только в кишечнике перестает вырабатываться необходимое количество молочной кислоты, появляются благоприятные условия для питания, роста и размножения гнилостной микрофлоры, которая сразу начинает отравлять человека продуктами своей жизнедеятельности, что влечет сильнейшие поражения.

Гниение древесины

Переработка отмершей древесины и возврат в почву неорганических соединений, из которых она состояла, также производится при участии бактерий сапротрофов. Но если при разложении животной органики им отведена ключевая роль, то древесину в основном разлагают грибы.

Гнилостные процессы в дереве вызывают не плесневые грибы. Поражение древесины плесневым грибом незначительно влияет на целостность древесных волокон и общий вид дерева. Повреждения, причиненные дереву плесневым грибом, легко удаляются.

Настоящий враг древесины – домовой гриб-разрушитель. Этот микроорганизм (эукариот) превращает древесину в труху, непригодную для дальнейшего использования. Наличие в тканях дерева настоящего домового гриба снижает качество древесины в несколько раз. Такой материал уже не используют для производства надежной и красивой продукции из древесины.

Сапротрофы (как бактерии, так и грибы) питаются теми предметами, которые имеют определенную материальную ценность для человека. Фактически они портят здоровье человека, его дома, еду, одежду и урожай. Но природа не может обойтись без этого очень важной группы бактериального сообщества. Вот почему человеку нужно искать путь не как уничтожить сапротрофов, а как обезопасить себя от продуктов их жизнедеятельности.

Больше информации