Хромосомная теория наследственности. Основные положения. Конспект: Хромосомная теория наследственности. Закон Моргана

§ 5. Т. Г. Морган и его хромосомная теория

Томас Гент Морган родился в 1866 г., в штате Кентукки (США). Окончив в двадцать лет университет, в двадцать четыре года Морган удостаивается звания доктора наук, а в двадцать пять лет становится профессором.

С 1890 г. Морган занимается экспериментальной эмбриологией. В первом десятилетии 20-го века увлекается вопросами наследственности.

Звучит парадоксально, но Морган вначале своей деятельности был ярым противником учения Менделя и собирался опровергать его законы на животных объектах - кроликах. Однако попечители Колумбийского университета сочли этот опыт слишком дорогостоящим. Так Морган начал свои исследования на более дешевом объекте - плодовой мушке дрозофиле и затем не только не пришел к отрицанию законов Менделя, но и стал достойным продолжателем его учения.

Исследователь в опытах с дрозофилой создает хромосомную теорию наследственности - крупнейшее открытие, занимающее, по выражению Н. К. Кольцова , "то же место в биологии, как молекулярная теория в химии и теория атомных структур в физике".

В 1909-1911 гг. Морган и его не менее прославленные ученики А. Стёртевант, Г. Меллер, К. Бриджес показали, что третий закон Менделя требует внесения существенных дополнений: наследственные задатки не всегда наследуются независимо; порой они передаются целыми группами - сцепленно друг с другом. Такие группы, расположенные в соответствующей хромосоме, могут перемещаться в другую гомологичную при конъюгации хромосом во время мейоза (профаза I).

Полностью хромосомная теория была сформулирована Т. Г. Морганом в период с 1911 по 1926 г. Своим появлением и дальнейшим развитием эта теория обязана не только Моргану и его школе, но и работам значительного числа ученых, как зарубежных, так и отечественных, среди которых в первую очередь следует назвать Н. К. Кольцова и А. С. Серебровского (1872-1940).

Согласно хромосомной теории, передача наследственной информации связана с хромосомами , в которых линейно , в определенном локусе (от лат. locus - место), лежат гены. Поскольку хромосомы парны, то каждому гену одной хромосомы соответствует парный ген другой хромосомы (гомолога), лежащий в том же локусе. Эти гены могут быть одинаковыми (у гомозигот) или разным (у гетерозигот). Различные формы генов, возникающие путем мутации из исходного, называются аллелями , или аллеломорфами (от греч. алло - разный, морфа - форма). Аллели по-разному влияют на проявление признака. Если ген существует более чем в двух аллельных состояниях, то такие аллели в популяции * образуют серию так называемых множественных аллелей. Каждая особь в популяции может содержать в своем генотипе любые два (но не более) аллеля, а каждая гамета - соответственно лишь один аллель. В то же время в популяции могут находиться индивидуумы с любыми аллелями этой серии. Примером множественных аллелей могут служить аллели гемоглобина (см. главу I, § 5).

* (Популяцией (от лат. popularus - население) называется группа особей одного вида, объединенных взаимным скрещиванием, в той или иной мере изолированная от других групп особей данного вида. )

Степень доминирования в сериях аллелей может возрастать от крайнего рецессивного гена до крайнего доминантного. Можно привести большое число примеров такого типа. Так, у кроликов рецессивным геном серии множественных аллелей является ген с, обусловливающий развитие альбинизма * . Доминантным по отношению к этому гену будет ген c h гималайской (горностаевой) окраски (розовые глаза, белое тело, темные кончики носа, ушей, хвоста и конечностей); над этим геном, а также над геном с доминирует ген светло-серой окраски (шиншилловой) c ch . Еще более доминантной ступенью оказывается ген агути - с а (доминирует над генами с, c h и c ch). Самый доминантный из всей серии ген черной окраски С доминирует над всеми "нижними ступенями аллелей" - генами c, c h , c ch , с а.

* (Отсутствие пигмента (см. главу VII, § 5). )

Доминантность, как и рецессивность аллелей,- не абсолютное, а относительное их свойство. Степени доминантности и рецессивности могут быть различны. Один и тот же признак может наследоваться по доминантному или рецессивному типу.

Так, например, складка над внутренним углом глаза (эпикантус) у монголоидов наследуется доминантно, а у негроидов (бушмены, готтентоты) - рецессивно.

Как правило, заново возникающие аллели рецессивны, наоборот, аллели старых сортов растений или пород животных (еще в большей степени диких видов) - доминантны.

Каждая пара хромосом характеризуется определенным набором генов, составляющих группу сцепления. Именно поэтому группы разных признаков иногда наследуются совместно друг с другом.

Так как соматические клетки дрозофилы содержат четыре пары хромосом (2n = 8), а половые - вдвое меньше (1n = 4), то у плодовой мушки насчитывается четыре группы сцепления; аналогично этому у человека число групп сцепления равно числу хромосом гаплоидного набора (23).

Для ряда организмов (дрозофила, кукуруза) и некоторых хромосом человека * составлены хромосомные, или генетические, карты, представляющие собой схематичное расположение генов в хромосомах.

* (К настоящему времени установить точную локализацию генов человека (если принять во внимание общее число генов) удалось лишь в отдельных и относительно редких случаях, например для признаков, сцепленных с половыми хромосомами. )

В качестве примера приведем хромосомную карту части Х-хромосомы дрозофилы (рис. 24). С большей или меньшей точностью в этой карте отражены последовательность генов и расстояние между ними. Определить расстояние между генами удалось при помощи генетических и цитологических анализов кроссинговера, который происходит при конъюгации гомологичных хромосом во время зигонемы профазы I мейоза (см. главу II, § 7).

Перемещение генов из одной хромосомы в другую происходит с определенной частотой, которая обратно пропорциональна расстоянию между генами: чем меньше расстояние, тем выше процент перекреста (единица расстояния между генами названа в честь Моргана морганидой и равна минимальному расстоянию в хромосоме, которое может быть измерено путем кроссинговера). Кроссинговер изображен на рис. 25.

В настоящее время известно тесное сцепление некоторых локусов генов и для них вычислен процент пере-креста. Сцепленные гены определяют, например, проявление резус-фактора и генов MN-системы крови (о наследовании свойств крови см. главу VII, § 3). В отдельных семьях удалось проследить сцепление резус-фактора с овалоцитозом (наличие примерно 80-90% эритроцитов овальной формы - аномалия протекает, как правило, без клинических проявлений), которые дают около 3% перекреста. До 9% кроссинговера наблюдается между генами, контролирующими проявления групп АВО крови и фактором Lu. Известно, что ген, влияющий на аномалию строения ногтей и колена, также сцеплен с локусами АВО-системы; процент перекреста между ними около 10. Значительно лучше изучены группы сцепления (а следовательно, и хромосомные карты) Х- и Y-хромосом человека (см. главу VII, § 6). Известно, например, что тесно связаны между собой гены, определяющие развитие дальтонизма (цветовой слепоты) и гемофилии (кровоточивости); процент перекреста между ними равен 10.

Правильность гипотезы Моргана была подтверждена в начале века Куртом Штерном (цитологические исследования) и сотрудниками Моргана Теофилусом Пайнтером (цитологом) и Кальвином Бриджесом (генетиком) на гигантских хромосомах слюнных желез личинок дрозофилы (подобных гигантским хромосомам других двукрылых). На рис. 26 показана часть гигантской хромосомы слюнной железы личинки хирономуса (мотыля).

При изучении гигантских хромосом с помощью обычного светового микроскопа хорошо заметна поперечная исчерченность, образованная чередованием светлых и более темных полос дисков - хромомеров ; они образованы сильно спирализованными, плотно лежащими рядом друг с другом участками.

Формирование таких гигантских хромосом называется политенией , т. е. редупликацией хромосом без увеличения их числа. При этом редуплицированные хроматиды остаются рядом, плотно прилегая друг к другу.

Если хромосома, состоящая из пары хроматид, будет девять раз последовательно удваиваться, то число нитей (хромонем) в такой политенной хромосоме будет 1024. Благодаря частичной деспирализации хромонем длина такой хромосомы увеличивается по сравнению с обычной в 150-200 раз.

В 1925 г. Стертевант показал наличие неравного кроссинговера: в одной из гомологичных хромосом может оказаться два одинаковых локуса, в которых располагаются, например, гены, влияющие на форму глаза дрозофилы - Ваr, а в другой - ни одного локуса. Так получились мухи с резко выраженным признаком узких полосковидных глаз (ген Ultra Bar) (см. рис. 31).

Кроме цитологических доказательств правильности хромосомной теории, были проделаны генетические эксперименты - скрещивание разных рас дрозофилы. Так, среди множества сцепленных генов в плодовой мушке имеются два рецессивных гена: ген черной окраски тела (bleack ) и ген зачаточных крыльев (vestigial ).

Назовем их условно генами а и б. Им соответствуют два доминантных аллеля: ген серого тела и нормально развитых крыльев (А и Б). При скрещивании чистолинейных мух аабб и ААББ все первое поколение гибридов будет иметь генотип АаБб. Рассуждая теоретически, во втором поколении (F 2) следует ожидать следующих результатов.


Однако в небольшом, но постоянном проценте случаев встречались необычные потомки из необычных гамет. Таких гамет в каждом скрещивании наблюдалось около 18% (9% Аб и 9% аБ).


Появление таких исключений хорошо объясняется процессом кроссинговера. Таким образом, и генетические исследования позволили установить, что нарушение сцепления - кроссинговер, приводящий к увеличению изменчивости форм, статистически постоянен.

В заключение отметим, что целый ряд положений классической генетики на сегодняшний день претерпел ряд изменений.

Мы многократно употребляли термины "доминантные" и "рецессивные" гены (аллели) и признаки. Однако исследования последних лет показали, что так называемые рецессивные гены могут фактически полностью ими не быть. Правильнее сказать, что рецессивные гены дают очень слабое видимое или невидимое проявление в фенотипе. Но и в последнем случае рецессивные аллели, внешне незаметны в фенотипе, могут быть обнаружены при помощи специальных биохимических методик. Кроме этого, один и тот же ген при одних условиях среды может вести себя как доминантный, при других - как рецессивный.

Так как развитие всех организмов происходит в зависимости и под воздействием внешней среды, то и на проявление генотипа в определенном фенотипе влияют факторы среды (температура, пища, влажность и газовый состав атмосферы, ее давление, наличие патогенных для данного организма форм, химический состав воды, почвы и пр., а для человека и явления социального порядка). В фенотипе никогда не проявляются все генотипические возможности. Поэтому в разных условиях фенотипические проявления близких генотипов могут сильно отличаться друг от друга. Таким образом, в проявлении признака участвуют (в большей или меньшей степени) как генотип, так и среда.

Создателем хромосомной теории (ХТ) является учёный Томас Морган. ХТ является результатом изучения наследственности на клеточном уровне.

Суть хромосомной теории :

Материальными носителями наследственности являются хромосомы.

Основными доказательством этому является:

    Цитогенетический параллелизм

    Хромосомное определение пола

    Сцепленное с полом наследование

    Сцепление генов и кроссинговер

Основные положения хросомной теории:

    Наследственные задатки (гены) локализованы в хромосомах.

    Гены расположены в хромосоме в линейном порядке.

    Каждый ген занимает определенный участок (локус). Аллельные гены занимают аналогичные локусы в гомологичных хромосомах.

    Гены, локализованные в одной хромосоме, наследуются совместно, сцеплено (Закон Моргана) и образуют группу сцепления. Число групп сцепления равно гаплоидному числу хромосом (n).

    Между гомологичными хромосомами возможен обмен участками, или рекомбинация.

    Расстояние между генами измеряются в процентах кроссинговера – морганидах.

    Частота кроссинговера обратно пропорциональна расстоянию между генами, а сила сцепления между генами обратно пропорциональна расстоянию между ними.

    Цитогенетический параллелизм

Дипломником Моргана Сюттоном было замечено что поведение генов по Менделю, совпадает с поведение хромосом: (ТАБЛИЦА – цитогенетический паралелизм)

Каждый организм несёт 2-а наследственных задатка, в гамету входит только 1- ин наследственный задаток из пары. При оплодотворении в зиготе и далее в организме опять 2-а наследственных задатка по каждому признаку.

Точно так же ведут себя и хромосомы, что можно предположить что гены лежат в хромосомах и наследуются вместе с ними.

    Хромосомное определение пола

В 1917 году Алленом было показано что мужские и женские особи у мхов отличаются по набору хромосом. В клетках диплоидной ткани мужского организма половые хромосомы XиY, в женскомXиX. Таким образом Хромосомы определяют такой признак как пол, а следовательно могут быть материальными носителями наследственности. Позже хромосомное определение пола было показано и для других организмов, в том числе и для человека.(ТАБЛИЦА)

    Сцепленное с полом наследование

Поскольку половые хромосомы различны у мужских и женских организмов, признаки, гены которых, расположены в Х или Yхромосомах, будут наследовать по-разному. Такие признаки называютсясцепленными с полом признаками .

Особенности наследования сцепленных с полом признаков

    Не соблюдается 1 закон Менделя

    Реципрокные скрещивания дают разный результат

    Имеет место крисс-кросс (или наследование крест-накрест).

Впервые наследование связанное с признаком было обнаружено Морганом у дрозофилы.

W + -красные глаза

(C) X W+ X W+ * X w Y

(C) X w X w * X W+ Y

w – белые глаза

(CЖ)X W + X w – Красные глаза

X w X W + - Красные глаза

(CМ)X W + Y– Красные глаза

X w Y– Белые глаза

Таким образом наследование выявленной Морганом мутация – “белые глаза” - white, характеризовалась перечисленными выше особенностями:

    Закон единообразия несоблюдался

    В 2-ух реципрокных скрещиваниях получено разное потомство

    Во втором скрещивании сыновья получают признак матери (белые глаза), дочери – признак отца (красные глаза).

Такое наследование и называется «наследование крисс-кросс»

(ТАБЛИЦА сцепленное с полом наследование )

Сцепленное с полом наследование объясняется отсутствием в Yхромосоме генов, аллельных генамXхромосоме.Yхромосома намного меньше Х хромосомы, в ней, в настоящее время, локализовано 78(?) генов, в то время как вXхромосоме их более 1098.

Примеры сцепленных с полом наследований:

Гемофилия, дистрофия Дюшенна, синдром Данкана, синдром Альпорта, и др.

Есть гены, которые наоборот содержатся в Yхромосоме и отсутствуют вXхромосоме, они, следовательно, встречаются только в мужских организмах, и никогда в женских (голандрическое наследование) и передаются только сыновьям от отца.

    Сцепление генов и кроссинговер

В генетике было известно такое явления как «притяжение генов»: некоторые неаллельные признаки наследовались не независимо, как должны по IIIзакону Менделя, а наследовались вместе, не давали новых комбинаций. Морган объяснил это тем, что эти гены находятся в одной хромосоме, поэтому они расходятся в дочерние клетки вместе одной группой, как бы сцеплено. Он назвал это явление –сцепленным наследованием .

Закон сцепления Моргана:

Гены расположенные в одной хромосоме наследуются совместно, сцеплено.

Гены расположенные в одной хромосоме образуют группу сцепления. Число групп сцепления равно «n» - гаплоидному числу хромосом.

Скрещивали гомозиготные линии мух с серым цветом тела и длинными крыльями и мух, имеющих чёрное тело и короткие крылья. Гены цвета тела и длинны крыльев – сцеплены, т.е. лежат в одной хромосоме.

А- серое тело

а- чёрное тело

B- нормальные крылья (длинные)

b- зачаточные крылья

(С Ж) AABBxaabb(CМ)

Серые длиннокрылые

Чёрные короткокрылые

Запись в хромосомном выражении

Серое тело

Длинные крылья

Чёрное тело

Короткое тело

Все мухи имеют серое тело и длинные крылья

Т.е. в этом случае закон единообразия гибридов Iпоколения соблюдается. Однако вF 2 вместо ожидаемого расщепления 9:3:3:1 получилось отношение на 3 серых длиннокрылых на 1 часть чёрных короткокрылых, т.е. новых сочетаний признаков не появлялось. Морган предположил что дегетерозиготыF 2 - ()продуцируют (дают) гаметы не 4, а только 2 типов -и. Проведенные анализирующие скрещивания это подтвердило:

Серое тело

Длинные крылья

Чёрное тело

Короткое тело

F a

Серое тело

Длинные крылья

Чёрное тело

Короткие крылья

В результате в F 2 расщепление идёт как при моногибридном скрещивании 3:1.

Серое тело

Длинные крылья

Серое тело

Длинные крылья

Серое тело

Длинные крылья

Чёрное тело

Короткие крылья

Кроссинговер.

В небольшом проценте случаев в F 2 в опытах Моргана появлялись мухи с новыми сочетаниями признаков: крылья длинные, тело черное; крылья короткие, а тело серое. Т.е. признаки «расцепились». Морган объяснил это тем, что хромосомы во время конъюгации в мейозе обмениваются генами. В результате получаются особи с новыми сочетаниями признаков, т.е. как и положено по третьему закону Менделя. Морган назвал этот обмен генами рекомбинацией.

Позже цитологи действительно подтвердили гипотезу Моргана, обнаружив обмен участками хромосом у кукурузы и у саламандры. Они назвали этот процесс кроссинговер.

Кроссинговер увеличивает разнообразие потомства в популяции.

В клетках каждого организма находится определенное число хромосом. Генов в них очень много. У человека 23 пары (46) хромосом, генов около 100 000. Гены находятся в хромосомах. В одной хромосоме локализовано много генов. Хромосома со всеми находящимися в ней генами образует группу сцепления. Число групп сцепления равно гаплоидному набору хромосом. У человека 23 группы сцепления. Гены, находящиеся в одной хромосо- ме, сцеплены не абсолютно. Во время мейоза при конъюгации хромосом гомологичные хромосомы обмениваются частями. Это явление называют кроссинговером, который может произойти в любом участке хромосомы. Чем дальше расположены друг от друга локусы в одной хромосоме, тем чаще между ними может происходить обмен участками (рис. 76).

У мухи дрозофилы гены длины крыльев (V - длинные и v - короткие) и окраска тела (В - серая и b - черная) находятся в одной паре гомологичных хромосом, т.е. относятся к одной группе сцепления. Если скрестить муху, имеющую серый цвет тела и длинные крылья, с мухой черного цвета с короткими крыльями, то в первом поколении все мухи будут иметь серый цвет тела и длинные крылья (рис. 77).

В результате скрещивания дигетерозиготного самца с гомозиготной рецессивной самкой мухи будут похожи на родителей. Это происходит потому, что гены, находящиеся в одной хромосоме, наследуются сцепленно. У самца мухи дрозофилы сцепление полное. Если скрестить дигетерозиготную самку с гомозиготным рецессивным самцом, то часть мух будет похожа на родителей, а у

Рис. 76. Кроссинговер.

1 - две гомологичные хромосомы; 2 - их перекрест во время конъюгации; 3 - две новые комбинации хромосом.

другой части произойдет перекомбинация признаков. Такое наследование имеет место для генов одной группы сцепления, между которыми может произойти кроссинговер. Это пример неполного сцепления генов.

Основные положения хромосомной теории наследственности

. Гены находятся в хромосомах.

. Гены в хромосоме расположены линейно.

Рис. 77. Сцепленное наследование генов окраски тела и состояния крыльев у плодовой мухи.

Ген серого цвета (В) доминирует над геном черного цвета тела (b), ген длинных крыльев (V) - над геном коротких крыльев (v). В и V находятся в одной хромосоме.

а - полное сцепление генов вследствие отсутствия перекреста хромосом у самцов дрозофилы: РР - самка серая с длинными крыльями (BBVV) скрещена с черным короткокрылым самцом (bbvv); F 1 - серый самец с длинными крыльями (BbVv) скрещен с черной короткокрылой самкой (bbvv); F 2 - поскольку у самца не происходит кроссинговера, появятся два вида потомков: 50% - черных короткокрылых и 50% - серых с нормальными крыльями; б - неполное (частичное) сцепление признаков вследствие перекреста хромосом у самок дрозофилы: РР - самка с длинными крыльями (BBVV) скрещена с черным короткокрылым самцом (bbvv); F 1 - серая самка с длинными крыльями (BbVv) скрещена с черным короткокрылым самцом (bbvv). F 2 - поскольку у самки происходит кроссинговер гомологичных хромосом, образуются четыре типа гамет и появятся четыре вида потомков: некроссоверы - серые с длинными крыльями (BbVv) и черные короткокрылые (bbvv), кроссоверы - черные с длинными крыльями (bbVv), серые короткокрылые (Bbvv).

. Каждый ген занимает определенное место - локус.

. Каждая хромосома представляет собой группу сцепления. Число групп сцепления равно гаплоидному числу хромосом.

Между гомологичными хромосомами происходит обмен аллельными генами. Расстояние между генами пропорционально проценту кроссинговера между ними.

Вопросы для самоконтроля

1. Где находятся гены?

2. Что такое группа сцепления?

3. Чему равно число групп сцепления?

4. Как сцеплены гены в хромосомах?

5. Как наследуется признак длины крыльев и цвета тела у мухи дрозофилы?

6. Потомство с какими признаками проявится при скрещивании гомозиготной самки с длинными крыльями и серым цветом тела с гомозиготным черным самцом с короткими крыльями?

7. Потомство с какими признаками появится при скрещивании дигетерозиготного самца с гомозиготной рецессивной самкой?

8. Какое сцепление генов имеет место у самца дрозофилы?

9. Какое потомство будет при скрещивании дигетерозиготной самки с гомозиготным рецессивным самцом?

10. Какое сцепление генов имеет место у самки дрозофилы?

11. Каковы основные положения хромосомной теории наследственности?

Ключевые слова темы «Хромосомная теория наследственности»

гены

группа сцепления

длина

клетки

конъюгация

кроссинговер

крылья

линейно локус место муха

наследственность

обмен

окраска

организм пары

перекомбинация

поколение

положение

потомки

расстояние

результат

родители

самец

самка

скрещивание

тело

теория

участок

хромосомы

цвет

часть

человек

число

Хромосомный механизм определения пола

Фенотипические различия между особями разного пола обусловлены генотипом. Гены находятся в хромосомах. Есть правила индивидуальности, постоянства, парности хромосом. Диплоидный набор хромосом называют кариотипом. В женском и мужском кариотипе 23 пары (46) хромосом (рис. 78).

22 пары хромосом одинаковы. Их называют аутосомами. 23-я пара хромосом - половые хромосомы. В женском кариотипе одина-

Рис. 78. Кариотипы разных организмов. 1 - человека; 2 - комара; 3 растения скерды.

ковые половые хромосомы ХХ. В мужском кариотипе половые хромосомы XY. Y-хромосома очень мала и содержит мало генов. Сочетание половых хромосом в зиготе определяет пол будущего организма.

При созревании половых клеток в результате мейоза гаметы получают гаплоидный набор хромосом. В каждой яйцеклетке есть 22 аутосомы+Х-хромосома. Пол, образующий гаметы, одинаковые по половой хромосоме, называют гомогаметным полом. Половина сперматозоидов содержит - 22 аутосомы+Х-хромосома, а половина 22 аутосомы+Y. Пол, образующий гаметы, различные по половой хромосоме, называют гетерогаметным. Пол будущего ребенка определяется в момент оплодотворения. Если яйцеклетка оплодотворена сперматозоидом, имеющим Х-хромосому, развивается женский организм, если Y-хромосому - мужской (рис. 79).

Рис. 79. Хромосомный механизм образования пола.

Вероятность рождения мальчика или девочки равна 1:1 или 50%:50%. Такое определение пола характерно для человека и мле- копитающих. У некоторых насекомых (кузнечики и тараканы) нет Y-хромосомы. Самцы имеют одну Х - хромосому (Х0), а самки - две (ХХ). У пчел самки имеют 2n набор хромосом (32 хромосомы), а самцы - n (16 хромосом). У женщин в соматических клетках две половые Х-хромосомы. Одна из них образует глыбку хроматина, которая бывает заметна в интерфазных ядрах при обработке реактивом. Эта глыбка - тельце Барра. У мужчин тельце Барра отсутствует, потому что у них всего одна Х-хромосома. Если при мейозе в яйцеклетку попадает сразу две ХХхромосомы и такая яйцеклетка будет оплодотворена сперматозоидом, то зигота будет иметь большее число хромосом.

Например, организм с набором хромосом ХХХ (трисомия по Х- хромосоме) по фенотипу - девочка. У нее недоразвиты половые железы. В ядрах соматических клеток выделяются два тельца Барра.

Организм с набором хромосом ХХY (синдром Клайнфельтера) по фенотипу - мальчик. У него недоразвиты семенники, отмечается физическая и умственная отсталость. Есть тельце Барра.

Хромосомы ХО (моносомия по Х-хромосоме) - определяют синдром Шерешевского-Тернера. Организм с таким набором - девочка. У нее недоразвиты половые железы, малый рост. Нет тельца Барра. Организм, не имеющий Х-хромосомы, а содержащий только Y- хромосому - нежизнеспособен.

Наследование признаков, гены которых находятся в Х- или Y- хромосомах, называют наследованием, сцепленным с полом. Если гены находятся в половых хромосомах, они наследуются сцепленно с полом.

У человека в Х-хромосомах есть ген, определяющий признак свертывания крови. Рецессивный ген вызывает развитие гемофилии. В Х-хромосоме есть ген (рецессивный), который отвечает за проявление дальтонизма. У женщин две Х-хромосомы. Рецессивный признак (гемофилия, дальтонизм) проявляется только в том случае, если гены, отвечающие за него, будут находиться в двух Х-хромосомах: X h X h ; X d X d . Если в одной Х-хромосоме будет доминантный ген Н или D, а в другой - рецессивный h или d, то гемофилии или дальтонизма не будет. У мужчин одна Х-хромосома. Если в ней есть ген H или h, то эти гены обязательно проявят свое действие, потому что Y-хромосома не несет этих генов.

Женщина может быть гомозиготна или гетерозиготна по генам, локализованным в Х-хромосоме, но рецессивные гены проявляются только в гомозиготном состоянии.

Если гены находятся в Y-хромосоме (голандрическое наследование), то признаки, ими обусловленные, передаются от отца сыну. Например, через Y-хромосому наследуется волосатость ушей. У мужчин одна Х-хромосома. Все гены, находящиеся в ней, в том числе и рецессивные, проявляются в фенотипе. У гетерогаметного пола (мужского) большинство генов, локализованных в Х-хромосоме, находятся в гемизиготном состоянии, т. е. не имеют аллельной пары.

Y-хромосома содержит некоторые гены, гомологичные генам Х-хромосомы, например, гены геморрагического диатеза, общей цветной слепоты и др. Эти гены наследуются как через Х-, так и через Y-хромосому.

Вопросы для самоконтроля

1. Какие правила хромосом имеются?

2. Что такое кариотип?

3. Сколько аутосом у человека?

4. Какие хромосомы у человека отвечают за развитие пола?

5. Какова вероятность рождения мальчика или девочки?

6. Как определяют пол у кузнечиков и тараканов?

7. Как определяют пол у пчел?

8. Как определяют пол у бабочек и птиц?

9. Что такое тельце Барра?

10. Как можно определить наличие тельца Барра?

11.Чем можно объяснить появление большего или меньшего числа хромосом в кариотипе?

12.Что такое сцепленное с полом наследование?

13. Какие гены у человека наследуются сцепленно с полом?

14. Как и почему проявляют свое действие рецессивные гены, сцепленные с полом у женщин?

15. Как и почему проявляют свое действие рецессивные гены, сцепленные с Х-хромосомой у мужчин?

Ключевые слова темы «Хромосомное определение пола»

аутосомы

бабочки

вероятность

волосатость ушей

гаметы

генотип

гены

гетерогаметный пол

глыбка хроматина

гомогаметный пол

дальтонизм

девочка

действие

женщина

зигота

индивидуальность

кариотип

кузнечики

мальчик

мейоз

млекопитающее

момент

моносомия

мужчина

набор

насекомые

наследование

носитель

обработка реактивом оплодотворение

организм

особь

парность

пары

пол

половые клетки

потомство

правила

признак

птицы

пчелы

развитие

различия

рождение

рост

свертывание крови семенники синдром Дауна

синдром Клайнфельтера

синдром Шершевского-Тернера

слепота

созревание

состояние

сочетание

сперматозоиды

сын

тараканы

тельце Барра

трисомия

Y-хромосома

фенотип

хромосома

Х-хромосома

человек

ядро

яйцеклетка

Хромосомная теория наследственности. Хромосомные карты человека.

    Хромосомная теория Т.Моргана.

    Карты хромосом человека.

    Хромосомная теория Т.Моргана.

Наблюдая за большим количеством мух, Т. Морган выявил много мутаций, которые были связаны с изменением разных признаков: окраски глаз, формы крыльев, окраски тела и т.д.

При изучении наследования этих мутаций оказалось, что многие из них наследуются, сцепленно с полом.

Такие гены легко было выделить, потому что они передавались от материнских особей только потомству мужского пола, и через них - только их потомкам женского пола.

У человека признаки, наследуемые через Y-хромосому, могут быть только у лиц мужского пола, а наследуемые через Х-хромосому - у лиц как одного, так и другого пола.

При этом особь женского пола может быть гомо или гетерозиготной по генам, расположенным в Х-хромосоме, а рецессивные гены могут проявляться у нее только в гомозиготном состоянии.

У особи мужского пола только одна Х-хромосома, поэтому все локализованные в ней гены, в том числе и рецессивные, проявляются в фенотипе. Такие патологические состояния, как гемофилия (медленная свертываемость крови, обусловливающая повышенную кровоточивость), дальтонизм (аномалия зрения, при которой человек путает цвета, чаще всего красный с зеленым), наследуются у человека сцепленно с полом.

Исследование наследования, сцепленного с полом, стимулировало изучение сцепления между другими генами.

В качестве примера можно привести эксперименты на дрозофиле.

У дрозофилы существует мутация, обусловливающая черный цвет тела. Ген, ее вызывающий, рецессивен по отношению к гену серого цвета, характерному для дикого типа. Мутация, вызывающая рудиментарные крылья, также рецессивна к гену, приводящему к развитию нормальных крыльев. Серия скрещиваний показала, что ген черного цвета тела и ген рудиментарных крыльев передавались вместе, как будто оба эти признаки вызывались одним геном.

Причина такого результата заключалась в том, что гены, обусловливающие два признака, локализованы в одной хромосоме. Это явление так называемого полного сцепления генов. В каждой хромосоме расположено много генов, которые наследуются совместно, и такие гены называют группой сцепления.

Таким образом, закон независимого наследования и комбинирования признаков, установленный Г. Менделем, действует только в случае, когда гены, определяющие тот или иной признак, находятся в разных хромосомах (разных группах сцепления).

Однако гены, находящиеся в одной хромосоме, сцеплены не абсолютно.

    Сцепленные гены, кроссинговер.

Причиной неполного сцепления является кроссинговер. Дело в том, что во время мейоза, при конъюгации хромосом, происходит их перекрест, и гомологичные хромосомы обмениваются гомологичными участками. Это явление называется кроссинговером. Он может произойти в любом участке гомологичных Х-хромосом, даже в нескольких местах одной пары хромосом. Причем, чем дальше друг от друга расположены локусы в одной хромосоме, тем чаще между ними следует ожидать перекрест и обмен участками.

Рисунок 17 Кроссинговер: а - схема процесса; б - варианты кроссинговера между гомологичными хромосомами

    Карты хромосом человека.

В каждой группе сцепления генов содержатся сотни или даже тысячи генов.

В экспериментах А. Стертеванта в 1919 г. было показано, что гены внутри хромосомы расположены в линейном порядке.

Это было доказано путем анализа неполного сцепления в системе генов, принадлежащей к одной группе сцепления.

Изучение взаимоотношений между тремя генами при кроссинговере выявило, что в случае, если частота перекреста между генами А и В равна величине М, а между генами А и С частота обменов равна величине N, то частота перекреста между генами В и С составит М+N, или М - N, в зависимости в какой последовательности расположены гены: АВС или АСВ. И такая закономерность распространяется на все гены этой группы сцепления. Объяснение этому возможно лишь при линейном расположении генов в хромосоме.

Эти эксперименты явились основой создания генетических карт хромосом многих организмов, в том числе и человека.

Единицей генетической или хромосомной карты является сан-тиморганида (сМ). Это мера расстояния между двумя локусами, равная длине участка хромосомы, в пределах которого вероятность кроссинговера составляет 1%.

Методы изучения групп сцепления генов, такие как: генетический анализ соматических гибридных клеток, изучение морфологических вариантов и аномалий хромосом, гибридизация нуклеиновых кислот на цитологических препаратах, анализ аминокислотной последовательности белков и другие, которые позволили описать все 25 групп сцепления у человека.

Одной из основных целей исследования генома человека является построение точной и подробной карты каждой хромосомы. На генетической карте показано относительное расположение генов и других генетических маркеров на хромосоме, а также относительное расстояние между ними.

Генетическим маркером для составления карты потенциально может быть любой наследуемый признак, будь то цвет глаз или длина фрагментов ДНК. Главное при этом - наличие легко выявляемых межиндивидуальных различий рассматриваемых маркеров. Карты хромосом подобно географическим картам можно строить в разном масштабе, т.е. с разным уровнем разрешения.

Самой мелкомасштабной картой является картина дифференциального окрашивания хромосом. Максимально возможный уровень разрешения - один нуклеотид. Следовательно, самой крупномасштабной картой какой-либо хромосомы является полная последовательность нуклеотидов. Размер генома человека равен примерно 3 164,7 м.п.н.

К настоящему времени для всех хромосом человека построены мелкомасштабные генетические карты с расстоянием между соседними маркерами в 7-10 миллионов пар оснований или 7-10 Мб (мегабаз, 1Мб = 1 млн пар оснований).

Современные сведения о генетических картах человека содержат информацию о более чем 50 000 маркеров. Это означает, что они находятся в среднем на расстоянии десятков тысяч пар оснований друг от друга, и между ними расположено несколько генов.

Для многих участков, конечно же, имеются и более подробные карты, но все же большая часть генов еще не идентифицирована и не локализована.

К 2005 г. идентифицировано более 22 000 генов и около 11 000 генов картированы на отдельных хромосомах, около 6 000 генов локализованы, из них 1000 - это гены, определяющие заболевания.

Неожиданным оказалось обнаружение необычно большого числа генов на хромосоме 19 (более 1400), что превышает число генов (800), известных на самой большой хромосоме человека 1.

Рисунок 18 Патологическая анатомия хромосомы 3

Митохондриальная ДНК представляет собой небольшую кольцевую молекулу длиной 16 569 пар оснований. В отличие от ДНК ядерного генома она не связана с белками, а существует в «чистом» виде.

Рисунок 19 Структура митохондриального генома

В митохондриальных генах отсутствуют интроны, а межгенные промежутки очень невелики. Эта небольшая молекула содержит 13 генов, кодирующих белки, и 22 гена транспортных РНК. Митохондриальная ДНК полностью секвенирована и на ней выявлены все структурные гены. Митохондриальные гены имеют гораздо большую, чем хромосомные, копийность (несколько тысяч на клетку).

Наследственные свойства крови.

    Механизм наследования групп крови системы АВО и резус системы.

В одном локусе мог быть либо доминантный, либо рецессивный ген. Однако часто признак определяется не двумя, а несколькими генами.

Три или большее число генов, которые могут находиться в одном локусе (занимать одно и то же место в гомологичных хромосомах), называют множественными аллелями.

В генотипе одного индивида может быть не более двух генов из этого множества, однако в генофонде популяции соответствующий локус может быть представлен большим числом аллелей.

Примером является наследование группы крови.

Ген I A кодирует синтез в эритроцитах специфического белка агглютиногена А, ген I B - агглютиногена B, ген I О не кодирует никакого белка и является рецессивным по отношению к I A и I B ; I A и I B не доминируют относительно друг друга. Таким образом, генотип I О I О определяет группу крови 0 (первую); I A I A и I A I О - группу А (вторую); I B I B и I B I О - группу В (третью); I A I B - группу АВ (четвертую).

Если у одного из родителей группа крови 0, то (за исключением маловероятных ситуаций, требующих дополнительных обследований) у него не может родиться ребенок с группой крови АВ.

    Причины и механизм возникновения осложнений при гемотрансфузии, связанных с неправильно подобранной донорской кровью.

По определению иммуногенетики группа крови это - феномен сочетания антигенов эритроцитов и антител в плазме.

Группа крови определяется сочетанием аллелей. в настоящее время известно более 30 видов аллелей детерминирующих группы крови. При гемотрансфузии учитываются те группы, которые могут вызвать осложнения. Это группы крови системы АВО, Rh-фактор, С, Kell. В донорской крови данных групп сохраняются антитела. В других известных группах антитела в донорской крови быстро разрушаются.

На рис. 20 а) показаны группы крови системы АВО, где антитела, соответствующие антигенам группы В, синего цвета, группе А – красного. Рисунок показывает, что плазма группы А имеет антитела к группе В, группы В антитела к группе А, группы АВ антител нет, группы О – антитела к группам А и В.

При гемотрансфузии (переливании крови) переливают плазму, так как, эритроциты каждого человека несут на поверхности мембраны огромное количество антигенов, специфичных для данного человека. Попав в кровь реципиента, они вызывают тяжело протекающие иммунные реакции.

Рисунок 20 Группы кови системы АВО; а) сочетание антигенов на эритроцитах и антител в плазме, b) гемолиз эритроцитов реципиента антителами донорской крови.

Если реципиенту с группой В перелить кровь (плазму) группы В, антитела в плазме немедленно вступят в взаимодействие с антигенами эритроцитов с последующим лизисом эритроцитов рис 20 b). Такой же механизм возникновения осложнений при гемотрансфузии, связанных с неправильно подобранной донорской кровью.

Практическое занятие

Решение задач, моделирующих скрещивание, сцепленное с полом наследование, наследование групп крови по системе АВО и резус систе

Тема 32. Хромосомная теория наследственности. Закон Моргана

Введение
1. Т. Г. Морган - крупнейший генетик XX в.
2. Притяжение и отталкивание
3. Хромосомная теория наследственности
4. Взаимное расположение генов
5. Карты групп сцепления, локализация генов в хромосомах
6. Цитологические карты хромосом
7. Заключение
Список литературы

1. ВВЕДЕНИЕ

Третий закон Менделя - правило независимого наследования признаков - имеет существенные ограничения.
В опытах самого Менделя и в первых опытах, проведенных после вторичного открытия законов Менделя, в изучение были включены гены, расположенные в разных хромосомах, и вследствие этого не было обнаружено никаких расхождений с третьим законом Менделя. Несколько позднее найдены факты, противоречащие этому закону. Постепенное накопление и изучение их привело к установлению четвертого закона наследственности, получившего название закона Моргана (в честь американского генетика Томаса Гента Моргана, который первым сформулировал и обосновал его), или правила сцепления.
В 1911 г. в статье «Свободное расщепление в противоположность притяжению в менделевской наследственности» Морган писал: «Вместо свободного расщепления в менделевском смысле мы нашли «ассоциацию факторов», локализованных в хромосомах близко друг от друга. Цитология дала механизм, требуемый экспериментальными данными.
В этих словах кратко сформулированы основные положения хромосомной теории наследственности, разработанной Т. Г. Морганом.

1. Т. Г. МОРГАН - КРУПНЕЙШИЙ ГЕНЕТИК ХХ в.

Томас Гент Морган родился 25 сентября 1866 г. в штате Кентукки (США). В 1886 г. он окончил университет этого штата. В 1890 г. Т. Морган получил степень доктора философии, а в следующем году стал профессором женского колледжа в Пенсильвании. Главный период его жизни связан с Колумбийским университетом, где он с 1904 г. в течение 25 лет занимал пост заведующего кафедрой экспериментальной зоологии. В 1928 г. его пригласили руководить специально для него построенной биологической лабораторией в Калифорнийском технологическом институте, в городке близ Лос-Анджелеса, где он работал до самой смерти.
Первые исследования Т. Моргана посвящены вопросам экспериментальной эмбриологии.
В 1902 г. молодой американский цитолог Уолтер Сеттон (1877-1916), работавший в лаборатории Э. Вильсона (1856-1939), высказал предположение, что своеобразные явления, характеризующие поведение хромосом при оплодотворении, представляют собой, по всей вероятности, механизм менделевских закономерностей. Т. Морган был хорошо знаком и с самим Э. Вильсоном, и с работами его лаборатории, и поэтому, когда в 1908 г. он установил у самцов филоксеры наличие двух сортов сперматозоидов, один из которых обладал дополнительной хромосомой, сразу же возникло предположение о связи признаков пола с привнесением соответствующих хромосом. Так Т. Морган перешел к проблемам генетики. У него возникло предположение, что не только пол связан с хромосомами, но, быть может, и другие наследственные задатки локализованы в них.
Скромный бюджет университетской лаборатории заставил Т. Моргана заняться поисками более подходящего объекта для опытов по изучению наследственности. От мышей и крыс он переходит к плодовой мушке дрозофиле, выбор которой оказался чрезвычайно удачным. На этом объекте сосредоточилась работа школы Т. Моргана, а затем большинства других генетических научных учреждений. Крупнейшие открытия в генетике 20-30-х гг. ХХ в. связаны с дрозофилой.
В 1910 г. была опубликована первая генетическая работа Т. Моргана «Ограниченная полом наследственность у дрозофилы», посвященная описанию мутации белоглазости. Последующая, поистине гигантская работа Т. Моргана и его сотрудников позволила увязать в единое целое данные цитологии и генетики и завершилась созданием хромосомной теории наследственности. Капитальные труды Т. Моргана «Структурные основы наследственности», «Теория гена», «Экспериментальные основы эволюции» и другие знаменуют собой поступательное развитие генетической науки.
Среди биологов ХХ в. Т. Морган выделяется как блестящий генетик-экспериментатор и как исследователь широкого круга вопросов.
В 1931 г. Т. Морган был избран почетным членом Академии наук СССР, в 1933 г. ему была присуждена Нобелевская премия.

2. ПРИТЯЖЕНИЕ И ОТТАЛКИВАНИЕ

Впервые отклонение от правила независимого наследования признаков было замечено Бэтсоном и Пеннетом в 1906 г. при изучении характера наследования окраски цветков и формы пыльцы у душистого горошка. У душистого горошка фиолетовая окраска цветков (контролируемая геном В) доминирует над красной (зависящей от гена в), а продолговатая форма зрелой пыльцы («длинная пыльца»), связанная с наличием 3 пор, которую контролирует ген L, доминирует над «округлой» пыльцой с 2 порами, образование которой контролирует ген l.
При скрещивании пурпурного душистого горошка с длинной пыльцой и красного с округлой пыльцой все растения первого поколения имеют пурпуровые цветки и длинную пыльцу.
Во втором поколении среди 6952 изученных растений было найдено 4831 растение с пурпуровыми цветками и длинной пыльцой, 390 с пурпуровыми цветками и округлой пыльцой, 393 с красными цветками и длинной пыльцой и 1338 с красными цветками и круглой пыльцой.
Это соотношение хорошо соответствует расщеплению, которое ожидается в том случае, если при образовании гамет первого поколения гены В и L встречаются в 7 раз чаще в тех сочетаниях, в которых они находились у родительских форм (ВL и bl), чем в новых сочетаниях (Вl и bL) (табл. 1).
Создается впечатление, что гены В и L, а также b и l притягиваются друг к другу и только с трудом могут быть отделены один от другого. Такое поведение генов было названо притяжением генов. Предположение о том, что гаметы с генами В и L в таких сочетаниях, в каких они были представлены у родительских форм, встречаются в 7 раз чаще, чем гаметы с новым сочетанием (в данном случае Вl и bL), получило прямое подтверждение в результатах так называемых анализирующих скрещиваний.
При скрещивании гибридов первого поколения (F1) (генотип BbLl) c рецессивным родителем (bbll) было получено расщепление: 50 растений с пурпуровыми цветами и длинной пыльцой, 7 растений с пурпуровыми цветками и округлой пыльцой, 8 растений с красными цветками и длинной пыльцой и 47 растений с красными цветками и округлой пыльцой, что очень хорошо соответствует ожидаемому соотношению: 7 гамет со старыми сочетаниями генов к 1 гамете с новыми сочетаниями.
В тех скрещиваниях, где один из родителей имел генотип BBll, а второй генотип bbLL, расщепление во втором поколении имело совсем другой характер. В одном из таких скрещиваний в F2 было найдено 226 растений с пурпуровыми цветками и длинной пыльцой, 95 с пурпуровыми цветками и округлой пыльцой, 97 с красными цветками и длинной пыльцой и одно растение с красными цветками и округлой пыльцой. В этом случае создается впечатление, что гены B и L отталкиваются друг от друга. Такое поведение наследственных факторов было названо отталкиванием генов.
Поскольку притяжение и отталкивание генов встречалось очень редко, то оно считалось какой-то аномалией и своеобразным генетическим курьезом.
Несколько позднее у душистого горошка было обнаружено еще несколько случаев притяжения и отталкивания (форма цветка и окраска листовой пазухи, окраска цветка и форма паруса цветка и некоторые другие пары признаков), но это не изменило общей оценки явления притяжения и отталкивания как аномалии.
Однако оценка этого явления резко изменилась после того, как в 1910-1911 гг. Т. Морган и его ученики обнаружили многочисленные случаи притяжения и отталкивания у плодовой мушки дрозофилы, очень благоприятного объекта для генетических исследований: культивирование ее стоит дешево и может осуществляться в лабораторных условиях в очень широких масштабах, срок жизни невелик и за один год можно получить несколько десятков поколений, контролируемые скрещивания легко осуществимы, имеется всего 4 пары хромосом, в том числе пара хорошо отличимых друг от друга половых.
Благодаря этому Морган и его сотрудники довольно скоро обнаружили большое количество мутаций наследственных факторов, определяющих хорошо заметные и удобные для изучения признаки, и смогли провести многочисленные скрещивания для изучения характера наследования этих признаков. При этом выяснилось, что многие гены у мушки дрозофилы наследуются не независимо друг от друга, а взаимно притягиваются или отталкиваются, причем гены, показывающие такое взаимодействие, оказалось возможным подразделить на несколько групп, в пределах которых все гены показывали более или менее сильно выраженное взаимное притяжение или отталкивание.
На основании анализа результатов этих исследований Т. Г. Морган высказал предположение, что притяжение имеет место между неаллеломорфными генами, расположенными в одной хромосоме, и сохраняется до тех пор, пока эти гены не будут отделены друг от друга в результате разрыва хромосом во время редукционного деления, а отталкивание имеет место в тех случаях, когда изучаемые гены расположены в разных хромосомах одной и той же пары гомологичных хромосом
Отсюда следует, что притяжение и отталкивание генов - различные стороны одного процесса, материальной основой которого является различное расположение генов в хромосомах. Поэтому Морган предложил отказаться от двух отдельных понятий «притяжение» и «отталкивание» генов и заменить его одним общим понятием «сцепление генов», считая, что оно зависит от их расположения в пределах одной хромосомы в линейном порядке.

3. ХРОМОСОМНАЯ ТЕОРИЯ НАСЛЕДСТВЕННОСТИ

При дальнейшем изучении сцепления генов вскоре было установлено, что число групп сцепления у дрозофилы (4 группы) соответствует гаплоидному числу хромосом у этой мухи, и все достаточно подробно изученные гены были распределены по этим 4 группам сцепления. Первоначально взаимное расположение генов в пределах хромосомы оставалось неизвестным, но позднее была разработана методика для определения порядка расположения генов, входящих в одну группу сцепления, основанная на количественном определении силы сцепления между ними.
Количественное определение силы сцепления генов основано на следующих теоретических предпосылках. Если два гена А и В у диплоидного организма расположены в одной хромосоме, а в гомологичной ей другой хромосоме расположены рецессивные аллеломорфы этих генов а и в, то отделиться друг от друга и вступить в новые сочетания со своими рецессивными аллеломорфами гены А и В могут только в том случае, если хромосома, в которой они расположены, будет разорвана на участке между этими генами и в месте разрыва произойдет соединение между участками этой хромосомы и ее гомолога.
Такие разрывы и новые сочетания участков хромосом действительно происходят при конъюгации гомологичных хромосом во время редукционного деления. Но при этом обмены участками обычно происходят не между всеми 4 хроматидами, из которых состоят хромосомы бивалентов, а только между двумя из этих 4 хроматид. Поэтому хромосомы, образующиеся в результате I деления мейоза, при таких обменах состоят из двух неодинаковых хроматид - неизмененной и реконструированной в результате обмена. Во II делении мейоза эти неодинаковые хроматиды расходятся к противоположным полюсам, и благодаря этому гаплоидные клетки, возникающие в результате редукционного деления (споры или гаметы), получают хромосомы, состоящие из одинаковых хроматид, но при этом только половине гаплоидных клеток достаются реконструированные хромосомы, а вторая половина получает неизмененные.
Такой обмен участками хромосом называется кроссинговером. При прочих равных условиях кроссинговер между двумя генами, расположенными в одной хромосоме, происходит тем реже, чем ближе друг к другу они расположены. Частота кроссинговера между генами пропорциональна расстоянию между ними.
Определение частоты кроссинговера обычно производится при помощи так называемых анализирующих скрещиваний (скрещивание гибридов F1 с рецессивным родителем), хотя для этой цели можно использовать и F2, получаемое от самоопыления гибридов F1 или скрещивания гибридов F1 между собой.
Можно рассмотреть такое определение частоты кроссинговера на примере силы сцепления между генами С и S у кукурузы. Ген С определяет образование окрашенного эндосперма (окрашенных семян), а его рецессивный аллель с обусловливает неокрашенный эндосперм. Ген S вызывает образование гладкого эндосперма, а его рецессивный аллель s определяет образование морщинистого эндосперма. Гены С и S расположены в одной хромосоме и довольно сильно сцеплены друг с другом. В одном из опытов, проведенных для количественного определения силы сцепления этих генов, были получены следующие результаты.
Растение с окрашенными гладкими семенами, гомозиготное по генам С и S и имевшее генотип ССSS (доминантный родитель), было скрещено с растением с неокрашенными морщинистыми семенами с генотипом ссss (рецессивный родитель). Гибриды первого поколения F1 были вновь скрещены с рецессивным родителем (анализирующее скрещивание). Таким образом было получено 8368 семян F2, у которых по окраске и морщинистости было обнаружено следующее расщепление: 4032 окрашенных гладких семени; 149 окрашенных морщинистых; 152 неокрашенных гладких; 4035 неокрашенных морщинистых.
Если бы при образовании макро- и микроспор у гибридов F1 гены С и S распределялись независимо друг от друга, то в анализирующем скрещивании все эти четыре группы семян должны быть представлены в одинаковом количестве. Но этого нет, т. к. гены С и S расположены в одной хромосоме, сцеплены друг с другом, и вследствие этого споры с рекомбинированными хромосомами, заключающими гены Сs и сS, образуются только при наличии кроссинговера между генами С и S, что имеет место сравнительно редко.
Процент кроссинговера между генами С и S можно вычислить по формуле:

Х = а + в / n х 100 %,

Где а - количество кроссинговерных зерен одного класса (зерен с генотипом Сscs, происходящих от соединения гамет Сs гибрида F1 с гаметами cs рецессивного родителя); в - количество кроссинговерных зерен второго класса (сScs); n - общее число зерен, полученных в результате анализирующего скрещивания.
Схема, показывающая наследование хромосом, содержащих сцепленные гены у кукурузы (по Гетчинсону). Указано наследственное поведение генов окрашенного (С) и бесцветного (с) алейрона, полного (S) и морщинистого (s) эндосперма, а также несущих эти гены хромосом при скрещивании двух чистых типов между собой и при возвратном скрещивании F1 с двойным рецессивом.
Подставляя количество зерен различных классов, полученное в этом опыте, в формулу, получаем:

Х = а + в / n х 100 % = 149 + 152 / 8368 х 100 % = 3,6 %

Расстояние между генами в группах сцепления обычно выражается в процентах кроссинговера, или в морганидах (морганида - единица, выражающая силу сцепления, названная по предложению А. С. Серебровского в честь Т. Г. Моргана, равна 1 % кроссинговера). В данном случае можно сказать, что ген С находится на расстоянии 3,6 морганиды от гена S.
Теперь можно определить при помощи этой формулы расстояние между В и L у душистого горошка. Подставляя числа, полученные при анализирующем скрещивании и приведенные выше, в формулу, получаем:

Х = а + в / n х 100 % = 7 + 8 / 112 х 100 % = 11,6 %

У душистого горошка гены В и L находятся в одной хромосоме на расстоянии 11,6 морганиды друг от друга.
Таким же путем Т. Г. Морган его ученики определили процент кроссинговера между многими генами, входящими в одну и ту же группу сцепления, для всех четырех групп сцепления дрозофилы. При этом выяснилось, что процент кроссинговера (или расстояние в морганидах) между различными генами, входящими в состав одной группы сцепления, оказался резко различным. Наряду с генами, между которыми кроссинговер происходил очень редко (около 0,1 %), имелись и такие гены, между которыми совсем не было обнаружено сцепления, что говорило о том, что одни гены расположены очень близко друг от друга, а другие - очень далеко.

4. ВЗАИМНОЕ РАСПОЛОЖЕНИЕ ГЕНОВ

Чтобы выяснить расположение генов, было предположено, что в хромосомах они расположены в линейном порядке и что истинное расстояние между двумя генами пропорционально частоте кроссинговера между ними. Эти предположения открыли возможность для определения взаимного расположения генов в пределах групп сцепления.
Предположим, известны расстояния (% кроссинговера) между тремя генами А, В и С и что они равны 5 % между генами А и В, 3 % между В и С и 8 % между генами А и С.
Допустим, что ген В расположен справа от гена А. В какую сторону от гена В при этом должен быть расположен ген С?
Если предположить, что ген С расположен слева от гена В, то в этом случае расстояние между геном А и С должно быть равно разности расстояний между генами А - В и В - С, т. е. 5 % - 3 % = 2 %. Но в действительности расстояние между генами А и С совсем другое и равно 8 %. Следовательно, предположение неправильно.
Если предположить теперь, что ген С расположен справа от гена В, то в этом случае расстояние между генами А и С должно быть равно сумме расстояний между генами А - В и генами В - С, т. е. 5 % + 3 % = 8 %, что полностью соответствует расстоянию, установленному опытным путем. Следовательно, это предположение правильное, и расположение генов А, В и С в хромосоме схематически можно изобразить следующим образом: А - 5 %, B - 3 %, C - 8 %.
После установления взаимного расположения 3 генов расположение четвертого гена по отношению к этим трем можно определить, зная его расстояние только от 2 из этих генов. Можно предположить, что известно расстояние гена Д от двух генов - В и С из числа 3 выше рассмотренных генов А, В и С и что оно равно 2 % между генами С и Д и 5 % между В и Д. Попытка поместить ген Д слева от гена С оказывается неудачной из-за явного несоответствия разности расстояний между генами В - С и С - Д (3 % - 2 % = 1 %) заданному расстоянию между генами В и Д (5 %). И, напротив, размещение гена Д справа от гена С дает полное соответствие между суммой расстояний между генами В - С и генами С - Д (3 % + 2 % = 5 %) заданному расстоянию между генами В и Д (5 %). Как только расположение гена Д относительно генов В и С нами установлено, без дополнительных опытов можно высчитать и расстояние между генами А и Д, т. к. оно должно быть равно сумме расстояний между генами А - В и В -Д (5 % + 5 % = 10 %).
При изучении сцепления между генами, входящими в одну группу сцепления, неоднократно была проведена опытная проверка расстояний между ними, предварительно вычисленных таким путем, как это сделано выше для генов А и Д, и во всех случаях получено очень хорошее соответствие.
Если известно расположение 4 генов, скажем А, В, С, Д, то «привязать» к ним пятый ген можно, если известны расстояния между геном Е и какими-то двумя из этих 4 генов, причем расстояния между геном Е и двумя остальными генами четверки могут быть вычислены так, как это сделано для генов А и Д в предыдущем примере.

5. КАРТЫ ГРУПП СЦЕПЛЕНИЯ, ЛОКАЛИЗАЦИЯ ГЕНОВ В ХРОМОСОМАХ

Путем постепенного привязывания все новых и новых генов к исходной тройке или четверке сцепленных генов, для которых ранее установлено их взаимное расположение, были составлены карты групп сцепления.
При составлении карт групп сцепления важно учитывать ряд особенностей. У бивалента может возникнуть не одна, а две, три и даже еще больше хиазм и связанных с хиазмами кроссоверов. Если гены расположены очень близко друг от друга, то вероятность, что на хромосоме между такими генами возникнут две хиазмы и произойдут два обмена нитями (два кроссовера), ничтожна мала. Если гены расположены сравнительно далеко друг от друга, вероятность двойного кроссинговера на участке хромосомы между этими генами у одной и той же пары хроматид значительно увеличивается. А между тем второй кроссовер в той же паре хроматид между изучаемыми генами, по сути дела, аннулирует первый кроссовер и устраняет обмен этими генами между гомологичными хромосомами. Поэтому количество кроссоверных гамет уменьшается и создается впечатление, что эти гены расположены ближе друг к другу, чем это есть на самом деле.

Схема двойного кроссинговера в одной паре хроматид между генами А и В и генами В и С. I - момент кроссинговера; II - рекомбинированные хроматиды АсВ и аСb.
При этом чем дальше расположены друг от друга изучаемые гены, тем чаще между ними происходит двойной кроссинговер и тем больше оказывается искажение истинного расстояния между этими генами, вызываемое двойными кроссинговерами.
Если расстояние между изучаемыми генами превосходит 50 морганид, то обнаружить сцепление между ними путем непосредственного определения количества кроссоверных гамет вообще невозможно. У них, как и у генов в гомологичных хромосомах, не сцепленных друг с другом, при анализирующем скрещивании только 50 % гамет заключают сочетание генов, отличных от тех, которые имелись у гибридов первого поколения.
Поэтому при составлении карт групп сцепления расстояния между далеко расположенными генами определяются не путем непосредственного определения количества кроссоверных гамет в анализирующих скрещиваниях, включающих эти гены, а путем сложения расстояний между многими близко расположенными друг от друга генами, находящимися между ними.
Такой способ составления карт групп сцепления позволяет точнее определить расстояние между сравнительно далеко (не более 50 морганид) расположенными генами и выявить сцепление между ними, если расстояние больше 50 морганид. В этом случае сцепление между далеко расположенными генами было установлено благодаря тому, что они сцеплены с промежуточно расположенными генами, которые, в свою очередь, сцеплены между собой.
Так, для генов, находящихся на противоположных концах II и III хромосом дрозофилы - на расстоянии друг от друга более 100 морганид, установить факт их расположения в одной и той же группе сцепления оказалось возможным благодаря выявлению их сцепления с промежуточными генами и сцепления этих промежуточных генов между собой.
Расстояния между далеко расположенными генами определены путем сложения расстояний между многими промежуточными генами, и только благодаря этому они установлены сравнительно точно.
У организмов, пол которых контролируется половыми хромосомами, кроссинговер происходит только у гомогаметного пола и отсутствует у гетерогаметного. Так, у дрозофилы кроссинговер происходит только у самок и отсутствует (точнее, происходит в тысячу раз реже) у самцов. В связи с этим гены самцов этой мухи, расположенные в одной хромосоме, показывают полное сцепление независимо от их расстояния друг от друга, что облегчает выявление их расположения в одной группе сцепления, но делает невозможным определение расстояния между ними.
У дрозофилы установлены 4 группы сцепления. Одна из этих групп имеет длину около 70 морганид, и гены, входящие в эту группу сцепления, явно связаны с наследованием пола. Поэтому можно считать несомненным, что гены, входящие в эту группу сцепления, расположены в половой Х-хромосоме (в 1 паре хромосом).
Другая группа сцепления очень мала, и длина ее равна всего 3 морганидам. Не вызывает сомнений, что гены, входящие в эту группу сцепления, расположены в микрохромосомах (IХ пара хромосом). Но две остальные группы сцепления имеют примерно одинаковую величину (107,5 морганиды и 106,2 морганиды) и решить, какой из пар аутосом (II и III пары хромосом) каждая из этих групп сцепления соответствует, довольно трудно.
Для решения вопроса о расположении групп сцепления в больших хромосомах пришлось использовать цитогенетическое изучение ряда перестроек хромосом. Таким путем удалось установить, что несколько большая группа сцепления (107,5 морганиды) соответствует II паре хромосом, а несколько меньшая группа сцепления (106,2 морганиды) расположена в III паре хромосом.
Благодаря этому было установлено, каким хромосомам соответствует каждая из групп сцепления у дрозофилы. Но и после этого оставалось неизвестным, каким образом группы сцепления генов располагаются в соответствующих им хромосомах. Располагается ли, например, правый конец первой группы сцепления у дрозофилы вблизи кинетической перетяжки Х-хромосомы или на противоположном конце этой хромосомы? То же относится и ко всем остальным группам сцепления.
Открытым оставался и вопрос о том, в какой мере расстояния между генами, выраженные в морганидах (в % кроссинговера), соответствуют истинным физическим расстояниям между ними в хромосомах.
Чтобы выяснить все это, нужно было, по крайней мере для некоторых генов, установить не только взаимное расположение в группах сцепления, но и их физическое положение в соответствующих хромосомах.
Осуществить это оказалось возможным только после того, как в результате совместных исследований генетика Г. Меллера и цитолога Г. Пайнтера было установлено, что под влиянием Х-лучей у дрозофилы (как и у всех живых организмов) происходит перенос (транслокация) участков одной хромосомы на другую. При переносе определенного участка одной хромосомы на другую все гены, расположенные в этом участке, утрачивают сцепление с генами, расположенными в остальной части хромосомы-донора, и приобретают сцепление с генами в хромосоме-реципиенте. (Позднее было установлено, что при таких перестройках хромосом происходит не просто перенос участка с одной хромосомы на другую, а взаимный перенос участка первой хромосомы на вторую, а с нее на место отделенного участка в первой переносится участок второй хромосомы).
В тех случаях, когда разрыв хромосомы при отделении участка, переносимого на другую хромосому, происходит между двумя генами, расположенными близко друг от друга, место этого разрыва может быть определено довольно точно как на карте группы сцепления, так и на хромосоме. На карте сцепления место разрыва находится на участке между крайними генами, из которых один остается в прежней группе сцепления, а другой включается в новую. На хромосоме место разрыва определяется путем цитологических наблюдений по уменьшению размеров хромосомы-донора и по увеличению - хромосомы-реципиента.
Транслокация участков с хромосомы 2 на хромосому 4 (по Моргану). В верхней части рисунка показаны группы сцепления, на средней - соответствующие этим группам сцепления хромосомы и внизу - метафазные пластинки соматического митоза. Цифры обозначают номера групп сцепления и хромосом. А и Б - «нижняя» часть хромосомы переместилась в хромосому 4; В - «верхняя» часть хромосомы 2 переместилась в хромосому 4. Генетические карты и пластинки хромосом гетерозиготны по транслокациям.
В результате изучения большого количества различных транслокаций, проведенного многими генетиками, были составлены так называемые цитологические карты хромосом. На хромосомы нанесены места расположения всех изученных разрывов, и благодаря этому установлено для каждого разрыва расположение двух соседних генов справа и слева от него.
Цитологические карты хромосом прежде всего позволили установить, каким концам хромосом соответствуют «правый» и «левый» концы соответствующих групп сцепления.
Сопоставление «цитологических» карт хромосом с «генетическими» (группами сцепления) дает существенный материал и для выяснения отношения расстояний между соседними генами, выраженными в морганидах, и физическими расстояниями между теми же генами в хромосомах при изучении этих хромосом под микроскопом.
Сравнение «генетических карт» I, II и III хромосом Drosophila melanogaster с «цитологическими картами» этих хромосом в метафазе на основе данных по транслокациям (по Левитскому). Sp - место прикрепления нитей веретена. Остальными обозначены различные гены.
Несколько позднее было выполнено тройное сопоставление расположения генов на «генетических картах» сцепления, «цитологических картах» обычных соматических хромосом и «цитологических картах» гигантских слюнных желез.
Кроме дрозофилы, довольно подробные «генетические карты» групп сцепления были составлены и для некоторых других видов рода Дрозофила. При этом оказалось, что у всех достаточно подробно изученных видов число групп сцепления равно гаплоидному числу хромосом. Так, у дрозофилы, имеющей три пары хромосом, обнаружено 3 группы сцепления, у дрозофилы с пятью парами хромосом - 5, а у дрозофилы с шестью парами хромосом - 6 групп сцепления.
Среди позвоночных животных лучше других изучена домовая мышь, у которой уже установлено 18 групп сцепления, в то время как пар хромосом 20. У человека, имеющего 23 пары хромосом, известно 10 групп сцепления. У курицы с 39 парами хромосом всего 8 групп сцепления. Несомненно, что при дальнейшем генетическом изучении этих объектов число выявленных групп сцепления у них увеличится и, вероятно, будет соответствовать числу пар хромосом.
Среди высших растений генетически наиболее хорошо изучена кукуруза. У нее 10 пар хромосом и обнаружено 10 довольно больших групп сцепления. При помощи экспериментально полученных транслокаций и некоторых других хромосомных перестроек все эти группы сцепления приурочены к строго определенным хромосомам.
У некоторых высших растений, изученных достаточно подробно, также было установлено полное соответствие между числом групп сцепления и числом пар хромосом. Так, ячмень имеет 7 пар хромосом и 7 групп сцепления, томат - 12 пар хромосом и 12 групп сцепления, львиный зев - гаплоидное число хромосом 8 и установлено 8 групп сцепления.
Среди низших растений генетически наиболее подробно изучен сумчатый гриб. У него гаплоидное число хромосом равно 7 и установлено 7 групп сцепления.
В настоящее время считается общепризнанным, что число групп сцепления у всех организмов равно их гаплоидному числу хромосом, и если у многих животных и растений число известных групп сцепления меньше, чем их гаплоидное число хромосом, то это зависит только от того, что они генетически изучены еще недостаточно и, вследствие этого, у них выявлена только часть имеющихся групп сцепления.

ЗАКЛЮЧЕНИЕ

Как итог можно привести отрывки из трудов Т. Моргана:
»...Поскольку сцепление имеет место, оказывается, что разделение наследственного вещества является до некоторой степени ограниченным. Например, у плодовой мухи дрозофилы известно около 400 новых типов мутантов, особенности которых составляют всего лишь четыре группы сцепления...
...Члены группы сцепления могут иногда оказаться не так полно сцепленными друг с другом, ...некоторые из рецессивных признаков одной серии могут оказаться замененными признаками дикого типа из другой серии. Однако даже и в этом случае они все-таки считаются сцепленными, потому что соединенными вместе они остаются чаще, чем наблюдается такой обмен между сериями. Этот обмен называется перекрестом (CROSS-ING-OVER) - кроссинговером. Термин этот обозначает, что между двумя соответственными сериями сцепления может происходить правильный обмен их частями, в котором участвует большое число генов...
Теория гена устанавливает, что признаки или свойства особи являются функцией соединенных в пары элементов (генов), заложенных в наследственном веществе в виде определенного числа групп сцепления; она устанавливает затем, что члены каждой пары генов, когда половые клетки созревают, разделяются в соответствии с первым законом Менделя и, следовательно, каждая зрелая половая клетка содержит только один ассортимент их; она устанавливает также, что члены, принадлежащие к различным группам сцепления, распределяются при наследовании независимо, соответственно второму закону Менделя; равным образом она устанавливает, что иногда имеет место закономерный взаимообмен-перекрест - между соответственными друг другу элементами двух групп сцепления; наконец, она устанавливает, что частота перекреста доставляет данные, доказывающие линейное расположение элементов по отношению друг к другу...»

СПИСОК ЛИТЕРАТУРЫ

1. Общая генетика. М.: Высшая школа, 1985.
2. Хрестоматия по генетике. Изд-во Казанского ун-та, 1988.
3. Петров Д. Ф. Генетика с основами селекции, М.: Высшая школа, 1971.
4. Биология. М.: Мир, 1974.