При каком угле падения преломления не происходит. Углы преломления в разных средах

В предыдущих параграфах мы изучили явление отражения света. Познакомимся теперь со вторым явлением, при котором лучи меняют направление своего распространения. Это явление – преломление света на границе раздела двух сред. Взгляните на чертежи с лучами и аквариумом в § 14-б. Луч, выходящий из лазера, был прямолинейным, но, дойдя до стеклянной стенки аквариума, луч изменил направление – преломился.

Преломлением света называют изменение направления луча на границе раздела двух сред, при котором свет переходит во вторую среду (сравните с отражением). Например, на рисунке мы изобразили примеры преломления светового луча на границах воздуха и воды, воздуха и стекла, воды и стекла.

Из сравнения левых чертежей следует, что пара сред «воздух-стекло» преломляет свет сильнее, чем пара сред «воздух-вода». Из сравнения правых чертежей видно, что при переходе из воздуха в стекло свет преломляется сильнее, чем при переходе из воды в стекло. То есть, пары сред, прозрачные для оптических излучений, обладают различной преломляющей способностью, характеризующейся относительным показателем преломления. Он вычисляется по формуле, указанной на следующей странице, поэтому может быть измерен экспериментально. Если в качестве первой среды выбран вакуум, то получаются значения:

Эти значения измерены при 20 °С для жёлтого света. При другой температуре или другом цвете света показатели будут иными (см. § 14-з). При качественном рассмотрении таблицы отметим: чем больше показатель преломления отличается от единицы, тем больше угол, на который отклоняется луч, переходя из вакуума в среду. Поскольку показатель преломления воздуха почти не отличается от единицы, влияние воздуха на распространение света практически незаметно.

Закон преломления света. Чтобы рассмотреть этот закон, введём определения. Угол между падающим лучом и перпендикуляром к границе раздела двух сред в точке излома луча назовём углом падения (a ). Аналогично, угол между преломлённым лучом и перпендикуляром к границе раздела двух сред в точке излома луча назовём углом преломления (g ).

При преломлении света всегда выполняются закономерности, составляющие закон преломления света: 1. Луч падающий, луч преломлённый и перпендикуляр к границе раздела сред в точке излома луча лежат в одной плоскости. 2. Отношение синуса угла падения к синусу угла преломления – постоянная величина, не зависящая от углов:

Применяют и качественную трактовку закона преломления света: при переходе света в оптически более плотную среду луч отклоняется к перпендикуляру к границе раздела сред. И наоборот.

Принцип обратимости световых лучей. При отражении или преломлении света падающий и отражённый лучи всегда можно поменять местами. Это означает, что ход лучей не изменится, если изменить их направления на противоположные. Многочисленные опыты подтверждают: при этом «траектория» хода лучей не меняется (см. чертёж).

На границе раздела двух прозрачных сред наряду с отражением света наблюдается его преломление свет, переходя в другую среду, меняет направление своего распространения.

Преломление светового луча происходит при его наклонном падении на поверхность раздела (правда, не всегда читайте дальше про полное внутреннее отражение). Если же луч падает перпендикулярно поверхности, то преломления не будет во второй среде луч сохранит своё направление и также пойдёт перпендикулярно поверхности.

4.3.1 Закон преломления (частный случай)

Мы начнём с частного случая, когда одна из сред является воздухом. Именно такая ситуация присутствует в подавляющем большинстве задач. Мы обсудим соответствующий частный случай закона преломления, а уж затем дадим самую общую его формулировку.

Предположим, что луч света, идущий в воздухе, наклонно падает на поверхность стекла, воды или какой-либо другой прозрачной среды. При переходе в среду луч преломляется, и его дальнейший ход показан на рис.4.11 .

Среда O

Рис. 4.11. Преломление луча на границе ¾воздух–среда¿

В точке падения O проведён перпендикуляр (или, как ещё говорят, нормаль) CD к поверхности среды. Луч AO, как и раньше, называется падающим лучом, а угол между падающим лучом и нормалью углом падения. Луч OB это преломлённый луч; угол между преломлённым лучом и нормалью к поверхности называется углом преломления.

Всякая прозрачная среда характеризуется величиной n, которая называется показателем преломления этой среды. Показатели преломления различных сред можно найти в таблицах. Например, для стекла n = 1;6, а для воды n = 1;33. Вообще, у любой среды n > 1; показатель преломления равен единице только в вакууме. У воздуха n = 1;0003, поэтому для воздуха с достаточной точностью можно полагать в задачах n = 1 (в оптике воздух не сильно отличается от вакуума).

Закон преломления (переход ¾воздух–среда¿).

1) Падающий луч, преломлённый луч и нормаль к поверхности, проведённая в точке падения, лежат в одной плоскости.

2) Отношение синуса угла падения к синусу угла преломления равно показателю преломле-

ния среды:

Поскольку n > 1, из соотношения (4.1 ) следует, что sin > sin , то есть > угол преломления меньше угла падения. Запоминаем: переходя из воздуха в среду, луч после преломления идёт ближе к нормали.

Показатель преломления непосредственно связан со скоростью v распространения света в данной среде. Эта скорость всегда меньше скорости света в вакууме: v < c. И вот оказывается,

Почему так получается, мы с вами поймём при изучении волновой оптики. А пока скомби-

нируем формулы (4.1 ) и (4.2 ):

Так как показатель преломления воздуха очень близок единице, мы можем считать, что скорость света в воздухе примерно равна скорости света в вакууме c. Приняв это во внимание и глядя на формулу (4.3 ), делаем вывод: отношение синуса угла падения к синусу угла преломления равно отношению скорости света в воздухе к скорости света в среде.

4.3.2 Обратимость световых лучей

Теперь рассмотрим обратный ход луча: его преломление при переходе из среды в воздух. Здесь нам окажет помощь следующий полезный принцип.

Принцип обратимости световых лучей. Траектория луча не зависит от того, в прямом или обратном направлении распространяется луч. Двигаясь в обратном направлении, луч пойдёт в точности по тому же пути, что и в прямом направлении.

Согласно принципу обратимости, при переходе из среды в воздух луч пойдёт по той же самой траектории, что и при соответствующем переходе из воздуха в среду (рис. 4.12 ) Единственное отличие рис.4.12 от рис.4.11 состоит в том, что направление луча поменялось на противоположное.

Среда O

Рис. 4.12. Преломление луча на границе ¾среда–воздух¿

Раз геометрическая картинка не изменилась, той же самой останется и формула (4.1 ): отношение синуса угла к синусу угла по-прежнему равно показателю преломления среды. Правда, теперь углы поменялись ролями: угол стал углом падения, а угол углом преломления.

В любом случае, как бы ни шёл луч из воздуха в среду или из среды в воздух работает следующее простое правило. Берём два угла угол падения и угол преломления; отношение синуса большего угла к синусу меньшего угла равно показателю преломления среды.

Теперь мы целиком подготовлены для того, чтобы обсудить закон преломления в самом общем случае.

4.3.3 Закон преломления (общий случай)

Пусть свет переходит из среды 1 с показателем преломления n1 в среду 2 с показателем преломления n2 . Среда с б´ольшим показателем преломления называется оптически более плотной; соответственно, среда с меньшим показателем преломления называется оптически менее плотной.

Переходя из оптически менее плотной среды в оптически более плотную, световой луч после преломления идёт ближе к нормали (рис. 4.13 ). В этом случае угол падения больше угла преломления: > .

Рис. 4.13. n1 < n2 ) >

Наоборот, переходя из оптически более плотной среды в оптически менее плотную, луч отклоняется дальше от нормали (рис. 4.14 ). Здесь угол падения меньше угла преломления:

Рис. 4.14. n1 > n2 ) <

Оказывается, оба этих случая охватываются одной формулой общим законом преломления, справедливым для любых двух прозрачных сред.

Закон преломления.

1) Падающий луч, преломлённый луч и нормаль к поверхности раздела сред, проведённая

в точке падения, лежат в одной плоскости.

2) Отношение синуса угла падения к синусу угла преломления равно отношению показателя преломления второй среды к показателю преломления первой среды:

Нетрудно видеть, что сформулированный ранее закон преломления для перехода ¾воздух– среда¿ является частным случаем данного закона. В самом деле, полагая в формуле (4.4 ) n1 = 1 и n2 = n, мы придём к формуле (4.1 ).

Вспомним теперь, что показатель преломления это отношение скорости света в вакууме к скорости света в данной среде: n1 = c=v1 , n2 = c=v2 . Подставляя это в (4.4 ), получим:

Формула (4.5 ) естественным образом обобщает формулу (4.3 ). Отношение синуса угла падения к синусу угла преломления равно отношению скорости света в первой среде к скорости света во второй среде.

4.3.4 Полное внутреннее отражение

При переходе световых лучей из оптически более плотной среды в оптически менее плотную наблюдается интересное явление полное внутреннее отражение. Давайте разберёмся, что это такое.

Будем считать для определённости, что свет идёт из воды в воздух. Предположим, что в глубине водоёма находится точечный источник света S, испускающий лучи во все стороны. Мы рассмотрим некоторые из этих лучей (рис. 4.15 ).

S B 1

Рис. 4.15. Полное внутреннее отражение

Луч SO1 падает на поверхность воды под наименьшим углом. Этот луч частично преломляется (луч O1 A1 ) и частично отражается назад в воду (луч O1 B1 ). Таким образом, часть энергии падающего луча передаётся преломлённому лучу, а оставшаяся часть энергии отражённому лучу.

Угол падения луча SO2 больше. Этот луч также разделяется на два луча преломлённый и отражённый. Но энергия исходного луча распределяется между ними по-другому: преломлённый луч O2 A2 будет тусклее, чем луч O1 A1 (то есть получит меньшую долю энергии), а отражённый луч O2 B2 соответственно ярче, чем луч O1 B1 (он получит б´ольшую долю энергии).

По мере увеличения угла падения прослеживается та же закономерность: всё б´ольшая доля энергии падающего луча достаётся отражённому лучу, и всё меньшая преломлённому лучу. Преломлённый луч становится всё тусклее и тусклее, и в какой-то момент исчезает совсем!

Это исчезновение происходит при достижении угла падения 0 , которому отвечает угол преломления 90 . В данной ситуации преломлённый луч OA должен был бы пойти параллельно поверхности воды, да идти уже нечему вся энергия падающего луча SO целиком досталась отражённому лучу OB.

При дальнейшем увеличении угла падения преломлённый луч и подавно будет отсутствовать.

Описанное явление и есть полное внутреннее отражение. Вода не выпускает наружу лучи с углами падения, равными или превышающими некоторое значение 0 все такие лучи целиком отражаются назад в воду. Угол0 называется предельным углом полного отражения.

Величину 0 легко найти из закона преломления. Имеем:

sin 0

Но sin 90 = 1, поэтому

sin 0

0 = arcsin

Так, для воды предельный угол полного отражения равен:

0 = arcsin1; 1 33 48;8:

Явление полного внутреннего отражения вы легко можете наблюдать дома. Налейте воду в стакан, поднимите его и смотрите на поверхность воды чуть снизу сквозь стенку стакана. Вы увидите серебристый блеск поверхности вследствие полного внутреннего отражения она ведёт себя подобно зеркалу.

Важнейшим техническим применением полного внутреннего отражения является волоконная оптика. Световые лучи, запущенные внутрь оптоволоконного кабеля (световода) почти параллельно его оси, падают на поверхность под большими углами и целиком, без потери энергии отражаются назад внутрь кабеля. Многократно отражаясь, лучи идут всё дальше и дальше, перенося энергию на значительное расстояние. Волоконно-оптическая связь применяется, например, в сетях кабельного телевидения и высокоскоростного доступа в Интернет.

Цель урока

Познакомить учащихся с закономерностями распространения света на границе раздела двух сред, дать объяснение этого явления с точки зрения волновой теории света.

№ п/п Этапы урока Время, мин Приемы и методы
1 Организационный момент 2
2 Проверка знаний 10 Работа на компьютере с тестом. Тест № 2
3 Объяснение нового материала по теме «Преломление света» 15 Лекция
4 Закрепление изученного материала 15 Работа на компьютере с рабочими листами. Модель «Отражение и преломление света»
5 Подведение итогов 2 Фронтальная беседа
6 Объяснение домашнего задания 1

Домашнее задание: § 61, задача № 1035, 1036.

Проверка знаний

Тест. Отражение света


Новый материал

Наблюдение преломления света.

На границе двух сред свет меняет направление своего распространения. Часть световой энергии возвращается в первую среду, то есть происходит отражение света. Если вторая среда прозрачна, то свет частично может пройти через границу сред, также меняя при этом, как правило, направление распространения. Это явление называется преломлением света .

Вследствие преломления наблюдается кажущееся изменение формы предметов, их расположения и размеров. В этом нас могут убедить простые наблюдения. Положим на дно пустого непрозрачного стакана монету или другой небольшой предмет. Подвинем стакан так, чтобы центр монеты, край стакана и глаз находились на одной прямой. Не меняя положения головы, будем наливать в стакан воду. По мере повышения уровня воды дно стакана с монетой как бы приподнимается. Монета, которая ранее была видна лишь частично, теперь будет видна полностью. Установим наклонно карандаш в сосуде с водой. Если посмотреть на сосуд сбоку, то можно заметить, что часть карандаша, находящаяся в воде, кажется сдвинутой в сторону.

Эти явления объясняются изменением направления лучей на границе двух сред – преломлением света.

Закон преломления света определяет взаимное расположение падающего луча AB (см. рис.), преломленного DB и перпендикуляра CE к поверхности раздела сред, восставленного в точке падения. Угол α называется углом падения , а угол β – углом преломления .

Падающий, отраженный и преломленный лучи нетрудно наблюдать, сделав узкий световой пучок видимым. Ход такого пучка в воздухе можно проследить, если пустить в воздух немного дыма или же поставить экран под небольшим углом к лучу. Преломленный пучок также виден в подкрашенной флюоресцином воде аквариума.

Пусть на плоскую границу раздела двух сред (например, из воздуха в воду) падает плоская световая волна (см. рис.). Волновая поверхность AC перпендикулярна лучам A 1 A и B 1 B . Поверхности MN сначала достигнет луч A 1 A . Луч B 1 B достигнет поверхности спустя время Δt . Поэтому в момент, когда вторичная волна в точке B только начнет возбуждаться, волна от точки A уже имеет вид полусферы радиусом

Волновую поверхность преломленной волны можно получить, проведя поверхность, касательную ко всем вторичным волнам во второй среде, центры которых лежат на границе раздела сред. В данном случае это плоскость BD . Она является огибающей вторичных волн. Угол падения α луча равен CAB в треугольнике ABC (стороны одного из этих углов перпендикулярны сторонам другого). Следовательно,

Угол преломления β равен углу ABD треугольника ABD . Поэтому

Разделив почленно полученные уравнения, получим:

где n – постоянная величина, не зависящая от угла падения.

Из построения (см. рис.) видно, что падающий луч, луч преломленный и перпендикуляр, восставленный в точке падения, лежат в одной плоскости. Данное утверждение вместе с уравнением, согласно которому отношение синуса угла падения к синусу угла преломления есть величина постоянная для двух сред , представляет собой закон преломления света .

Убедиться в справедливости закона преломления можно экспериментально, измеряя углы падения и преломления и вычисляя отношение их синусов при различных углах падения. Это отношение остается неизменным.

Показатель преломления.
Постоянная величина, входящая в закон преломления света, называется относительным показателем преломления или показателем преломления второй среды относительно первой .

Из принципа Гюйгенса не только следует закон преломления. С помощью этого принципа раскрывается физический смысл показателя преломления. Он равен отношению скоростей света в средах, на границе между которыми происходит преломление:

Если угол преломления β меньше угла падения α , то, согласно (*), скорость света во второй среде меньше, чем в первой.

Показатель преломления среды относительно вакуума называют абсолютным показателем преломления этой среды . Он равен отношению синуса угла падения к синусу угла преломления при переходе светового луча из вакуума в данную среду.

Пользуясь формулой (**), можно выразить относительный показатель преломления через абсолютные показатели преломления n 1 и n 2 первой и второй сред.

Действительно, так как

и

где c – скорость света в вакууме, то

Среду с меньшим абсолютным показателем преломления принято называть оптически менее плотной средой .

Абсолютный показатель преломления определяется скоростью распространения света в данной среде, которая зависит от физического состояния среды, то есть от температуры вещества, его плотности, наличия в нем упругих напряжений. Показатель преломления зависит также и от характеристик самого света. Как правило, для красного света он меньше, чем для зеленого, а для зеленого меньше, чем для фиолетового.

Поэтому в таблицах значений показателей преломления для разных веществ обычно указывается, для какого света приведено данное значение n и в каком состоянии находится среда. Если таких указаний нет, то это означает, что зависимостью от указанных факторов можно пренебречь.

В большинстве случаев приходится рассматривать переход света через границу воздух – твердое тело или воздух – жидкость, а не через границу вакуум – среда. Однако абсолютный показатель преломления n 2 твердого или жидкого вещества отличается от показателя преломления того же вещества относительно воздуха незначительно. Так, абсолютный показатель преломления воздуха при нормальных условиях для желтого света равен приблизительно 1,000292. Следовательно,

Рабочий лист к уроку

Примерные ответы
«Преломление света»

4.1. Основные понятия и законы геометрической оптики

Законы отражения света.
Первый закон отражения:
лучи, падающий и отражённый, лежат в одной плоскости с перпендикуляром к отражающей поверхности, восстановленным в точке падения луча.
Второй закон отражения:
угол падения равен углу отражения (см. рис. 8).
α - угол падения, β - угол отражения.

Законы преломления света. Показатель преломления.
Первый закон преломления:
падающий луч, преломлённый луч и перпендикуляр, восстановленный в точке падения к границе раздела, лежат в одной плоскости (см. рис. 9).


Второй закон преломления:
отношение синуса угла падения к синусу угла преломления есть величина постоянная для двух данных сред и называемая относительным показателем преломления второй среды относительно первой.

 Относительный показатель преломления показывает, во сколько раз скорость света в первой среде отличается от скорости света во второй среде:

Полное отражение.
Если свет переходит из оптически более плотной среды в оптически менее плотную, то при выполнении условия α > α 0 , где α 0 - предельный угол полного отражения, свет вообще не выйдет во вторую среду. Он полностью отразится от границы раздела и останется в первой среде. При этом закон отражения света даёт следующее соотношение:

4.2. Основные понятия и законы волновой оптики

Интерференцией называется процесс наложения волн от двух или нескольких источников друг на друга, в результате которого происходит перераспределение энергии волн в пространстве. Для перераспределения энергии волн в пространстве необходимо, чтобы источники волн были когерентны. Это означает, что они должны испускать волны одинаковой частоты и сдвиг по фазе между колебаниями этих источников с течением времени не должен изменяться.
 В зависимости от разности хода (∆) в точке наложения лучей наблюдается максимум или минимум интерференции. Если разность хода лучей от синфазных источников ∆ равна целому числу длин волн (m - целое число), то это максимум интерференции:

если нечётному числу полуволн - минимум интерференции:

Дифракцией называют отклонение в распространении волны от прямолинейного направления или проникновение энергии волн в область геометрической тени. Дифракция хорошо наблюдается в тех случаях, когда размеры препятствий и отверстий, через которые проходит волна, соизмеримы с длиной волны.
 Один из оптических приборов, на котором хорошо наблюдать дифракцию света - это дифракционная решётка. Она представляет собой стеклянную пластинку, на которую на равном расстоянии друг от друга алмазом нанесены штрихи. Расстояние между штрихами - постоянная решётки d. Лучи, прошедшие через решётку, дифрагируют под всевозможными углами. Линза собирает лучи, идущие под одинаковым углом дифракции, в одной из точек фокальной плоскости. Идущие под другом углом - в других точках. Накладываясь друг на друга, эти лучи дают максимум или минимум дифракционной картины. Условия наблюдения максимумов в дифракционной решётке имеют вид:

где m - целое число, λ - длина волны (см. рис. 10).

Явление преломления света.

Если световой пучок падает на поверхность, разделяющую две прозрачные среды разной оптической плотности, например воздух и воду, то часть света отражается от этой поверхности, а другая часть - проникает во вторую среду. При переходе из одной среды в другую луч света изменяет направление на границе этих сред. Это явление называется преломле­нием света.

Рассмотрим преломление света подробнее. На рисунке п оказаны: падающий луч АО, преломлённый луч ОВ и перпендикуляр CD, восстановленный из точки падения О к поверхности, разделяющей две разные среды. Угол АОС - угол падения, угол DOB - угол преломле­ния. Угол преломления DOB меньше угла падения АОС.

Луч света при переходе из воздуха в воду меняет своё направление, приближаясь к перпендикуляру CD. Вода - среда оптически более плотная, чем воздух. Если воду заменить какой-либо иной прозрачней средой, оптически более плотной, чем воздух, то преломлённый луч также будет приближаться к перпендикуляру. Поэтому можно сказать: если свет идет из среды оптически менее плотной в более плотную среду, то угол преломления всегда меньше угла падения.

Опыты показывают, что при одном и том же угле падения угол преломления тем меньше, чем плотнее в оптическом отношении среда, в которую проникает луч.
Если на пути преломлённого луча расположить перпендикулярно лучу зеркало, то свет отразится от зеркала и выйдет из воды в воздух по направлению падающего луча. Следовательно, лучи падающий и преломлённый обратимы так же, как обратимы падающий и отражённый лучи.
Если свет идёт из среды более оптически плотной в среду менее плотную, то угол преломления луча больше угла падения.

Давайте проведем дома маленький эксперимент. м дома маленькийэксперимент. ам надо опустить в стакан с водой карандаш, и он покажется поломанным. Э то можно объяснить только тем, что лучи света, идущие от карандаша, имеют в воде другое направление, чем в воздухе, т. е. происходит преломление света на границе воздуха с водой. Когда свет переходит из одной среды в другую, на границе раздела происходит отражение части падающего на неё света. Остальная часть света проникает в новую среду. Если свет падает под углом к поверхности раздела, отличным от прямого, от на границе световой луч изменяет своё направление.
Это и называется явлением преломлением света. Явление преломления света наблюдается на границе двух прозрачных сред и объясняется разной скоростью распространения света в различных средах. В вакууме скорость света составляет приблизительно 300000 км/с, во всех других

с редах она меньше.

На рисунке ниже показан луч, переходящий из воздуха в воду. Угол называется углом падения луча, а - углом преломления. Обратите внимание на то, что в воде луч приближается к нормали. Так происходит всякий раз, когда луч попадает в среду, где скорость света меньше. Если же свет распространяется из одной среды в другую, где скорость света больше, то он отклоняется от нормали.

Преломлением обусловлен целый ряд широко известных оптических иллюзий. Например, наблюдателю на берегу, кажется, что у человека, зашедшего в воду по пояс, ноги стали короче.

Законы преломления света.

Из всего сказанного заключаем:
1 . На границе раздела двух сред различной оптической плотности луч света при переходе из одной среды в другую меняет своё направление.
2. При переходе луча света в среду с большей оптической плотностью угол преломления меньше угла падения; при переходе луча света из оптически более плотной среды в среду менее плотную угол преломления больше угла паде ния.
Преломление света сопровождается отражением, причём с увеличением угла падения яркость отражённого пучка возрастает, а преломлённого ослабевает. Это можно увидеть проводя опыт, изображённом на рисунке. С ледовательно, отражённый пучок уносит с собой тем больше световой энергии, чем больше угол падения.

Пусть MN -граница раздела двух про зрачных сред, например, воздуха и воды, АО -падающий луч, ОВ - преломленный луч, -угол падения, -угол преломления, -скорость распространения света в первой среде, - скорость распространения света во второй среде.

Первый закон преломления звучит так: отношение синуса угла падения к синусу угла преломления является постоянной величиной для данных двух сред:

, где - относительный показатель преломления (показатель преломления второй среды относительно первой).

Второй закон преломления света очень напоминает второй закон отражения света:

падающий луч, луч преломленный и перпендикуляр, проведенный в точку падения луча, лежит в одной плоскости.

Абсолютный показатель преломления.

Скорость распространения света в воздухе почти не отличается от скорости света в вакууме: с м/с.

Если свет попадает из вакуума в какую-нибудь среду, то

где n - абсолютный показатель преломления данной среды. Относительный показатель преломления двух сред связанный с абсолютными показателями преломления этих сред, где и - соответственно абсолютные показатели преломления первой и второй сред.

Абсолютные показатели преломления света:

Вещество

Алмаз 2,42. Кварц 1,54. Воздух (при нормальных условиях) 1,00029. Этиловый спирт 1,36. Вода 1,33. Лёд 1,31. Скипидар 1,47. Плавленый кварц 1,46. Крон 1,52. Лёгкий флинт 1,58. Хлорид натрия (соль) 1,53.

(Как мы увидим в дальнейшем, показатель преломления n несколько меняется в зависимости от длины волны света – постоянное значение он сохраняет только в вакууме. Поэтому приведённые в таблице данные соответствуют желтому свету с длинной волны .)

Напимер, так как для алмаза , свет распространяется в алмазе со скоростью

Оптическая плотность среды.

Если абсолютный показатель преломления первой среды меньше абсолютного показателя преломления второй среды, то первая среда имеет меньшую оптическую плотность, нежели вторая и > . Оптическую плотность среды не следует путать с плотностью вещества.

Прохождение света сквозь плоско-параллельную пластинку и призму .

Большое практическое значение имеет прохождение света через прозрачные тела различной формы. Рассмотрим наиболее простые случаи.
Направим луч света сквозь толстую плоскопараллельную пластинку (пластинку, ограниченную параллельными гранями). Проходя через пластинку, луч света преломляется дважды: один раз при входе в пластинку, второй раз при выходе из пластинки в воздух.

Прошедший через пластинку луч света остаётся параллельным своему первоначальному направлению и только немного смещается. Это смещение тем больше, чем толще пластинка и чем больше угол падения. Величина смещения зависит и от того, из какого вещества изготовлена пластинка.
Примером плоскопараллельной пластинки служит оконное стекло. Но рассматривая предметы через стекло, мы не замечаем изменений в их расположении и форме потому, что стекло тонкое; лучи света, проходя оконное стекло, смещаются незначительно.
Если рассматривать какой-либо предмет через призму, то предмет кажетсясмещённым. Идущий от предмета луч света падает на призму в точке А, преломляется и идёт внутри призмы по направленшо АВ Дойдя до второй грани призмы. луч света ещё раз преломляется, отклоняясь к основанию призмы. Поэтому кажется, что луч идет из точки. располо женной на продолжении луча ВС, то есть предмет кажется смещённым к вершине угла, образованного преломляющими гранями призмы.

Полное отражение света.

Красивое зрелище представляет собой фонтан, у которого выбрасываемые струи освещаются изнутри. (Это можно изобразить в обычных условиях, проделав следующий опыт№1). Обьясним это явление чуть ниже.

При переходе света из оптически более плотной среды в оптически менее плотую наблюдается явление полного отражения света. Угол преломления в этом случае больший по сравнению с углом падения (рис. 141). При увеличении угла падения световых лучей от источника S на поверхность раздела двух сред МN наступит такой момент, когда преломленный луч пойдет вдоль границы раздела двух сред, то есть = 90°.

Угол падения , которому отвечает угол преломления = 90°, называют граничным углом полного отражения.

Если превысить этот угол, то лучи не выйдут из первой среды вообще, будет наблюдаться только явление отражения света от границы раздела двух сред.

Из первого закона преломления:

Так как , то .

Если вторая среда - воздух (вакуум), то где n - абсолютный показатель преломления среды, из которой идут лучи.

Объяснение явления наблюдаемого вами в опыте довольно простое. Луч света проходит вдоль струи воды и попадает на изогнутую поверхность под углом, большим предельного, испытывает полное внутреннее отражение, а затем опять попадает на противоположную сторону струи под углом опять больше предельного. Так луч проходит вдоль струи изгибаясь вместе с ней.

Но если бы свет полностью отражался внутри струи, то она не была бы видна извне. Часть света рассеивается водой, пузырьками воздуха и различными примесями, имеющимися в ней, а также вследствие неровностей поверхности струи, поэтому она видна снаружи.