Решение систем матричным. Матричный метод решения системы линейных алгебраических уравнений

Данный онлайн калькулятор решает систему линейных уравнений матричным методом. Дается очень подробное решение. Для решения системы линейных уравнений выберите количество переменных. Выбирайте метод вычисления обратной матрицы. Затем введите данные в ячейки и нажимайте на кнопку "Вычислить".

×

Предупреждение

Очистить все ячейки?

Закрыть Очистить

Инструкция ввода данных. Числа вводятся в виде целых чисел (примеры: 487, 5, -7623 и т.д.), десятичных чисел (напр. 67., 102.54 и т.д.) или дробей. Дробь нужно набирать в виде a/b, где a и b целые или десятичные числа. Примеры 45/5, 6.6/76.4, -7/6.7 и т.д.

Матричный метод решения систем линейных уравнений

Рассмотрим следующую систему линейных уравнений:

Учитывая определение обратной матрицы, имеем A −1 A =E , где E - единичная матрица. Следовательно (4) можно записать так:

Таким образом, для решения системы линейных уравнений (1) (или (2)), достаточно умножить обратную к A матрицу на вектор ограничений b .

Примеры решения системы линейных уравнений матричным методом

Пример 1. Решить следующую систему линейных уравнений матричным методом:

Найдем обратную к матрице A методом Жордана-Гаусса. С правой стороны матрицы A запишем единичную матрицу:

Исключим элементы 1-го столбца матрицы ниже главной диагонали. Для этого сложим строки 2,3 со строкой 1, умноженной на -1/3,-1/3 соответственно:

Исключим элементы 2-го столбца матрицы ниже главной диагонали. Для этого сложим строку 3 со строкой 2, умноженной на -24/51:

Исключим элементы 2-го столбца матрицы выше главной диагонали. Для этого сложим строку 1 со строкой 2, умноженной на -3/17:

Отделяем правую часть матрицы. Полученная матрица является обратной матрицей к A :

Матричный вид записи системы линейных уравнений: Ax=b , где

Вычислим все алгебраические дополнения матрицы A :

,
,
,
,
,
,
,
,
.

Обратная матрица вычисляется из следующего выражения.

(иногда этот способ именуют ещё матричным методом или методом обратной матрицы) требует предварительного ознакомления с таким понятием как матричная форма записи СЛАУ . Метод обратной матрицы предназначен для решения тех систем линейных алгебраических уравнений, у которых определитель матрицы системы отличен от нуля. Естественно, при этом подразумевается, что матрица системы квадратна (понятие определителя существует только для квадратных матриц). Суть метода обратной матрицы можно выразить в трёх пунктах:

  1. Записать три матрицы: матрицу системы $A$, матрицу неизвестных $X$, матрицу свободных членов $B$.
  2. Найти обратную матрицу $A^{-1}$.
  3. Используя равенство $X=A^{-1}\cdot B$ получить решение заданной СЛАУ.

Любую СЛАУ можно записать в матричной форме как $A\cdot X=B$, где $A$ - матрица системы, $B$ - матрица свободных членов, $X$ - матрица неизвестных. Пусть матрица $A^{-1}$ существует. Умножим обе части равенства $A\cdot X=B$ на матрицу $A^{-1}$ слева:

$$A^{-1}\cdot A\cdot X=A^{-1}\cdot B.$$

Так как $A^{-1}\cdot A=E$ ($E$ - единичная матрица), то записанное выше равенство станет таким:

$$E\cdot X=A^{-1}\cdot B.$$

Так как $E\cdot X=X$, то:

$$X=A^{-1}\cdot B.$$

Пример №1

Решить СЛАУ $ \left \{ \begin{aligned} & -5x_1+7x_2=29;\\ & 9x_1+8x_2=-11. \end{aligned} \right.$ с помощью обратной матрицы.

$$ A=\left(\begin{array} {cc} -5 & 7\\ 9 & 8 \end{array}\right);\; B=\left(\begin{array} {c} 29\\ -11 \end{array}\right);\; X=\left(\begin{array} {c} x_1\\ x_2 \end{array}\right). $$

Найдём обратную матрицу к матрице системы, т.е. вычислим $A^{-1}$. В примере №2

$$ A^{-1}=-\frac{1}{103}\cdot\left(\begin{array}{cc} 8 & -7\\ -9 & -5\end{array}\right). $$

Теперь подставим все три матрицы ($X$, $A^{-1}$, $B$) в равенство $X=A^{-1}\cdot B$. Затем выполним умножение матриц

$$ \left(\begin{array} {c} x_1\\ x_2 \end{array}\right)= -\frac{1}{103}\cdot\left(\begin{array}{cc} 8 & -7\\ -9 & -5\end{array}\right)\cdot \left(\begin{array} {c} 29\\ -11 \end{array}\right)=\\ =-\frac{1}{103}\cdot \left(\begin{array} {c} 8\cdot 29+(-7)\cdot (-11)\\ -9\cdot 29+(-5)\cdot (-11) \end{array}\right)= -\frac{1}{103}\cdot \left(\begin{array} {c} 309\\ -206 \end{array}\right)=\left(\begin{array} {c} -3\\ 2\end{array}\right). $$

Итак, мы получили равенство $\left(\begin{array} {c} x_1\\ x_2 \end{array}\right)=\left(\begin{array} {c} -3\\ 2\end{array}\right)$. Из этого равенства имеем: $x_1=-3$, $x_2=2$.

Ответ : $x_1=-3$, $x_2=2$.

Пример №2

Решить СЛАУ $ \left\{\begin{aligned} & x_1+7x_2+3x_3=-1;\\ & -4x_1+9x_2+4x_3=0;\\ & 3x_2+2x_3=6. \end{aligned}\right.$ методом обратной матрицы.

Запишем матрицу системы $A$, матрицу свободных членов $B$ и матрицу неизвестных $X$.

$$ A=\left(\begin{array} {ccc} 1 & 7 & 3\\ -4 & 9 & 4 \\0 & 3 & 2\end{array}\right);\; B=\left(\begin{array} {c} -1\\0\\6\end{array}\right);\; X=\left(\begin{array} {c} x_1\\ x_2 \\ x_3 \end{array}\right). $$

Теперь настал черёд найти обратную матрицу к матрице системы, т.е. найти $A^{-1}$. В примере №3 на странице, посвящённой нахождению обратных матриц, обратная матрица была уже найдена. Воспользуемся готовым результатом и запишем $A^{-1}$:

$$ A^{-1}=\frac{1}{26}\cdot \left(\begin{array} {ccc} 6 & -5 & 1 \\ 8 & 2 & -16 \\ -12 & -3 & 37\end{array} \right). $$

Теперь подставим все три матрицы ($X$, $A^{-1}$, $B$) в равенство $X=A^{-1}\cdot B$, после чего выполним умножение матриц в правой части данного равенства.

$$ \left(\begin{array} {c} x_1\\ x_2 \\ x_3 \end{array}\right)= \frac{1}{26}\cdot \left(\begin{array} {ccc} 6 & -5 & 1 \\ 8 & 2 & -16 \\ -12 & -3 & 37\end{array} \right)\cdot \left(\begin{array} {c} -1\\0\\6\end{array}\right)=\\ =\frac{1}{26}\cdot \left(\begin{array} {c} 6\cdot(-1)+(-5)\cdot 0+1\cdot 6 \\ 8\cdot (-1)+2\cdot 0+(-16)\cdot 6 \\ -12\cdot (-1)+(-3)\cdot 0+37\cdot 6 \end{array}\right)=\frac{1}{26}\cdot \left(\begin{array} {c} 0\\-104\\234\end{array}\right)=\left(\begin{array} {c} 0\\-4\\9\end{array}\right) $$

Итак, мы получили равенство $\left(\begin{array} {c} x_1\\ x_2 \\ x_3 \end{array}\right)=\left(\begin{array} {c} 0\\-4\\9\end{array}\right)$. Из этого равенства имеем: $x_1=0$, $x_2=-4$, $x_3=9$.

Тема 2. СИСТЕМЫ ЛИНЕЙНЫХ АЛГЕБРАИЧЕСКИХ УРАВНЕНИЙ.

Основные понятия.

Определение 1 . Системой m линейных уравнений с n неизвестными называется система вида:

где и - числа.

Определение 2 . Решением системы (I) называется такой набор неизвестных , при котором каждое уравнение этой системы обращается в тождество.

Определение 3 . Система (I) называется совместной , если она имеет хотя бы одно решение и несовместной , если она не имеет решений. Совместная система называется определенной , если она имеет единственное решение, и неопределенной в противном случае.

Определение 4 . Уравнение вида

называется нулевым , а уравнение вида

называется несовместным . Очевидно, что система уравнений, содержащая несовместное уравнение, является несовместной.

Определение 5 . Две системы линейных уравнений называются равносильными , если каждое решение одной системы служит решением другой и, наоборот, всякое решение второй системы является решением первой.

Матричная запись системы линейных уравнений.

Рассмотрим систему (I) (см. §1).

Обозначим:

Матрица коэффициентов при неизвестных

Матрица – столбец свободных членов

Матрица – столбец неизвестных

.

Определение 1. Матрица называется основной матрицей системы (I), а матрица - расширенной матрицей системы (I).

По определению равенства матриц системе (I) соответствует матричное равенство:

.

Правую часть этого равенства по определению произведения матриц (см. определение 3 § 5 главы 1 ) можно разложить на множители:

, т.е.

Равенство (2) называется матричной записью системы (I) .

Решение системы линейных уравнений методом Крамера.

Пусть в системе (I) (см. §1) m=n , т.е. число уравнений равно числу неизвестных, и основная матрица системы невырожденная, т.е. . Тогда система (I) из §1 имеет единственное решение

где Δ = det A называется главным определителем системы (I), Δ i получается из определителя Δ заменой i -го столбца на столбец из свободных членов системы (I).

Пример.Решить систему методом Крамера:

.

По формулам (3) .

Вычисляем определители системы:

,

,

.

Чтобы получить определитель , мы заменили в определителе первый столбец на столбец из свободных членов; заменяя в определителе 2-ой столбец на столбец из свободных членов, получаем ; аналогичным образом, заменяя в определителе 3-ий столбец на столбец из свободных членов, получаем . Решение системы:

Решение систем линейных уравнений с помощью обратной матрицы.

Пусть в системе(I) (см. §1) m=n и основная матрица системы невырожденная . Запишем систему (I) в матричном виде (см. §2 ):

т.к. матрица A невырожденная, то она имеет обратную матрицу (см. теорему 1 §6 главы 1 ). Умножим обе части равенства (2) на матрицу , тогда

По определению обратной матрицы . Из равенства (3) имеем

Решить систему с помощью обратной матрицы

.

Обозначим

В примере (§ 3)мы вычислили определитель , следовательно, матрица A имеет обратную матрицу . Тогда в силу (4) , т.е.

. (5)

Найдем матрицу (см. §6 главы 1 )

, , ,

, , ,

,

.

Метод Гаусса.

Пусть задана система линейных уравнений:

. (I)

Требуется найти все решения системы (I) или убедиться в том, что система несовместна.

Определение 1. Назовем элементарным преобразованием системы (I) любое из трёх действий:

1) вычёркивание нулевого уравнения;

2) прибавление к обеим частям уравнения соответствующих частей другого уравнения, умноженных на число l;

3) перемена местами слагаемых в уравнениях системы так, чтобы неизвестные с одинаковыми номерами во всех уравнениях занимали одинаковые места, т.е. если, например, в 1-ом уравнении мы поменяли 2-ое и 3-е слагаемые, тогда то же самое необходимо сделать во всех уравнениях системы.

Метод Гаусса состоит в том, что система (I) с помощью элементарных преобразований приводится к равносильной системе, решение которой находится непосредственно или устанавливается её неразрешимость.

Как было описано в §2 система (I) однозначно определяется своей расширенной матрицей и любое элементарное преобразование системы (I) соответствует элементарному преобразованию расширенной матрицы:

.

Преобразование 1) соответствует вычёркиванию нулевой строки в матрице , преобразование 2) равносильно прибавлению к соответствующей строке матрицы другой её строки, умноженной на число l, преобразование 3) эквивалентно перестановке столбцов в матрице .

Легко видеть, что, наоборот, каждому элементарному преобразованию матрицы соответствует элементарное преобразование системы (I). В силу сказанного, вместо операций с системой (I) мы будем работать с расширенной матрицей этой системы.

В матрице 1-ый столбец состоит из коэффициентов при х 1 , 2-ой столбец - из коэффициентов при х 2 и т.д. В случае перестановки столбцов следует учитывать, что это условие нарушается. Например, если мы поменяем 1-ый и 2-ой столбцы местами, то теперь в 1-ом столбце будут коэффициенты при х 2 , а во 2-ом столбце - коэффициенты при х 1 .

Будем решать систему (I) методом Гаусса.

1. Вычеркнем в матрице все нулевые строки, если такие имеются (т.е. вычеркнем в системе (I) все нулевые уравнения).

2. Проверим, есть ли среди строк матрицы строка, в которой все элементы, кроме последнего, равны нулю (назовём такую строку несовместной). Очевидно, что такой строке соответствует несовместное уравнение в системе (I) , следовательно, система (I) решений не имеет и на этом процесс заканчивается.

3. Пусть матрица не содержит несовместных строк (система (I) не содержит несовместных уравнений). Если a 11 =0 , то находим в 1-ой строке какой-нибудь элемент (кроме последнего) отличный от нуля и переставляем столбцы так, чтобы в 1-ой строке на 1-ом месте не было нуля. Будем теперь считать, что (т.е. поменяем местами соответствующие слагаемые в уравнениях системы (I)).

4. Умножим 1-ую строку на и сложим результат со 2-ой строкой, затем умножим 1-ую строку на и сложим результат с 3-ей строкой и т.д. Очевидно, что этот процесс эквивалентен исключению неизвестного x 1 из всех уравнений системы (I), кроме 1-ого. В новой матрице получаем нули в 1-ом столбце под элементом a 11 :

.

5. Вычеркнем в матрице все нулевые строки, если они есть, проверим, нет ли несовместной строки (если она имеется, то система несовместна и на этом решение заканчивается). Проверим, будет ли a 22 / =0 , если да, то находим во 2-ой строке элемент, отличный от нуля и переставляем столбцы так, чтобы . Далее умножаем элементы 2-ой строки на и складываем с соответствующими элементами 3-ей строки, затем - элементы 2-ой строки на и складываем с соответствующими элементами 4-ой строки и т.д., пока не получим нули под a 22 /

.

Произведенные действия эквивалентны исключению неизвестного х 2 из всех уравнений системы (I), кроме 1-ого и 2-ого. Так как число строк конечно, поэтому через конечное число шагов мы получим, что либо система несовместна, либо мы придём к ступенчатой матрице (см. определение 2 §7 главы 1 ) :

,

Выпишем систему уравнений, соответствующую матрице . Эта система равносильна системе (I)

.

Из последнего уравнения выражаем ; подставляем в предыдущее уравнение, находим и т.д., пока не получим .

Замечание 1. Таким образом, при решении системы (I) методом Гаусса мы приходим к одному из следующих случаев.

1. Система (I) несовместна.

2. Система (I) имеет единственное решение, если в матрице число строк равно числу неизвестных ().

3. Система (I) имеет бесчисленное множество решений, если число строк в матрице меньше числа неизвестных ().

Отсюда имеет место следующая теорема.

Теорема. Система линейных уравнений либо несовместна, либо имеет единственное решение, либо – бесконечное множество решений.

Примеры. Решить систему уравнений методом Гаусса или доказать ее несовместность:

б) ;

а) Перепишем заданную систему в виде:

.

Мы поменяли местами 1-ое и 2-ое уравнение исходной системы, чтобы упростить вычисления (вместо дробей мы с помощью такой перестановки будем оперировать только целыми числами).

Составляем расширенную матрицу:

.

Нулевых строк нет; несовместных строк нет, ; исключим 1-ое неизвестное из всех уравнений системы, кроме 1-го. Для этого умножим элементы 1-ой строки матрицы на «-2» и сложим с соответствующими элементами 2-ой строки, что равносильно умножению 1-го уравнения на «-2» и сложению со 2-ым уравнением. Затем умножим элементы 1-ой строки на «-3» и сложим с соответствующими элементами третьей строки, т.е. умножим 2-ое уравнение заданной системы на «-3» и сложим с 3-им уравнением. Получим

.

Матрице соответствует система уравнений). - (см. определение 3§7 главы 1).

Уравнения вообще, линейные алгебраические уравнения и их системы, а также методы их решения занимают в математике, как теоретической, так и прикладной, особое место.

Это связано с тем обстоятельством, что подавляющее большинство физических, экономических, технических и даже педагогических задач могут быть описаны и решены с помощью разнообразных уравнений и их систем. В последнее время особую популярность среди исследователей, ученых и практиков приобрело математическое моделирование практически во всех предметных областях, что объясняется очевидными его преимуществами перед другими известными и апробированными методами исследования объектов различной природы, в частности, так называемых, сложных систем. Существует великое многообразие различных определений математической модели, данных учеными в разные времена, но на наш взгляд, самое удачное, это следующее утверждение. Математическая модель – это идея, выраженная уравнением. Таким образом, умение составлять и решать уравнения и их системы – неотъемлемая характеристика современного специалиста.

Для решения систем линейных алгебраических уравнений наиболее часто используются методы: Крамера, Жордана-Гаусса и матричный метод.

Матричный метод решения - метод решения с помощью обратной матрицы систем линейных алгебраических уравнений с ненулевым определителем.

Если выписать коэффициенты при неизвестных величинах xi в матрицу A, неизвестные величины собрать в вектор столбец X, а свободные члены в вектор столбец B, то систему линейных алгебраических уравнений можно записать в виде следующего матричного уравнения A · X = B, которое имеет единственное решение только тогда, когда определитель матрицы A не будет равен нулю. При этом решение системы уравнений можно найти следующим способом X = A -1 · B , где A -1 - обратная матрица.

Матричный метод решения состоит в следующем.

Пусть дана система линейных уравнений с n неизвестными:

Её можно переписать в матричной форме: AX = B , где A - основная матрица системы, B и X - столбцы свободных членов и решений системы соответственно:

Умножим это матричное уравнение слева на A -1 - матрицу, обратную к матрице A : A -1 (AX ) = A -1 B

Так как A -1 A = E , получаем X = A -1 B . Правая часть этого уравнения даст столбец решений исходной системы. Условием применимости данного метода (как и вообще существования решения неоднородной системы линейных уравнений с числом уравнений, равным числу неизвестных) является невырожденность матрицы A . Необходимым и достаточным условием этого является неравенство нулю определителя матрицы A : detA ≠ 0.

Для однородной системы линейных уравнений, то есть когда вектор B = 0 , действительно обратное правило: система AX = 0 имеет нетривиальное (то есть не нулевое) решение только если detA = 0. Такая связь между решениями однородных и неоднородных систем линейных уравнений носит название альтернативы Фредгольма.

Пример решения неоднородной системы линейных алгебраических уравнений .

Убедимся в том, что определитель матрицы, составленный из коэффициентов при неизвестных системы линейных алгебраических уравнений не равен нулю.

Следующим шагом будет вычисление алгебраических дополнений для элементов матрицы, состоящей из коэффициентов при неизвестных. Они понадобятся для нахождения обратной матрицы.

Применение уравнений широко распространено в нашей жизни. Они используются во многих расчетах, строительстве сооружений и даже спорте. Уравнения человек использовал еще в древности и с тех пор их применение только возрастает. Матричный метод позволяет находить решения СЛАУ (система линейных алгебраических уравнений) любой сложности. Весь процесс решения СЛАУ сводится к двум основным действиям:

Определение обратной матрицы на основании главной матрицы:

Умножение полученной обратной матрицы на вектор-столбец решений.

Допустим, дано СЛАУ следующего вида:

\[\left\{\begin{matrix} 5x_1 + 2x_2 & = & 7 \\ 2x_1 + x_2 & = & 9 \end{matrix}\right.\]

Начнем решение данного уравнения с выписывания матрицы системы:

Матрица правой части:

Определим обратную матрицу. Найти матрицу 2-го порядка можно следующим образом: 1 - сама матрица должна быть невырожденной; 2 - ее элементы, которые находятся на главной диагонали, меняем местами, а у элементов побочной диагонали выполняем смену знака на противоположный, после чего выполняем деление полученных элементов на определитель матрицы. Получим:

\[\begin{pmatrix} 7 \\ 9 \end{pmatrix}=\begin{pmatrix} -11 \\ 31 \end{pmatrix}\Rightarrow \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} =\begin{pmatrix} -11 \\ 31 \end{pmatrix} \]

2 матрицы считаются равными, если равны их соответствующие элементы. В итоге имеем следующий ответ решения СЛАУ:

Где можно решить систему уравнений матричным методом онлайн?

Решить систему уравнений вы можете на нашем сайте . Бесплатный онлайн решатель позволит решить уравнение онлайн любой сложности за считанные секунды. Все, что вам необходимо сделать - это просто ввести свои данные в решателе. Так же вы можете и узнать, как решить уравнение на нашем сайте. А если у вас остались вопросы, то вы можете задать их в нашей групе Вконтакте.