Квадратный сабвуфер для малого объема. Объёмы акустического оформления. Какой объем короба нужен для закрытого ящика

Короб под сабвуфер

Как вы оформите сабвуфер, так он и зазвучит. Конечно, есть готовые варианты – корпусные низкочастотники, однако требовать от них реальной производительности и вибраций не стоит. Это «середина», рассчитанная на среднестатистического потребителя, далеко не аудиофильский и творческий формат.

Самыми популярными типами акустического оформления низкочастотников являются закрытые ящики и фазоинверторы. Написано о них много, подробно рассказывается о преимуществах и недостатках, есть отзывы, примеры и многое другое.

Короб под сабвуфер требует точнейшего расчета, есть даже специальная программа для расчета объема короба сабвуфера. Если вы сталкиваетесь с этим вопросом впервые, лучше обратиться к профессионалам. Иначе получится плачевный результат: деньги на ветер и отсутствие звука, к которому стремимся.

Какой объем короба нужен для закрытого ящика?

  • Сабвуфер 8 дюймов – короб 8-12 литров в чистом виде
  • Сабвуфер 10 дюймов – короб 13-23 литров
  • Сабвуфер 12 дюймов – короб 24-37 литров
  • Сабвуфер 15 дюймов – короб 38-57 литров

Точный объем не обозначить, так как каждый НЧ динамик имеет свои характеристики и требования к установке, здесь немаловажна и настройка. Если объема короба будет больше, чем нужно, то низкие частоты получатся расплывчатыми, не четкими. Если меньше – бас станет «быстрым» и резким, это слишком для человеческого слуха.

Какой объем короба нужен для фазоинвертора?

  • Сабвуфер 8 дюймов – 20-33 литра в чистом виде
  • Сабвуфер 10 дюймов – 34-46 литров
  • Сабвуфер 12 дюймов – 47-78 литров
  • Сабвуфер 15 дюймов – 79-120 литров

В отличие от закрытого ящика фазоинверторный корпус может работать даже при меньших значениях, хотя и здесь важно не переборщить. Со слишком увеличенным или уменьшенным объемом вы не получите звука, в самом негативном варианте результатом станет потеря мощности и выход НЧ динамика из строя.

Сабвуфер с перевернутыми динамиками

Обычно устанавливается на демо-кары для соревнований SPL, где особенно ценится максимальное звуковое давление. Плюс – экономия объема корпуса, возможность установки нескольких сабвуферов на один короб. Диффузор динамиков «прокачивает» объем в обе стороны. Так SPL-щики и добиваются того самого «ветра», когда в салоне вибрирует все вокруг, включая обивку, "long hair", людей. Такие короба делают настоящие профессионалы, опираясь на опыт и знания в теме автозвука.

Требования к материалам

В качестве материалов для короба сабвуфера используют многослойную фанеру, древесину или ДСП. Также потребуется шумоизоляция, герметик, саморезы, клей и инструменты. В технических документах к каждому НЧ динамику идет инструкция с указанием необходимых объемов корпуса для хорошего звучания. Чертежи разрабатываются в соответствии с рекомендуемыми производителями объемами короба.

Если вы желаете купить короб для сабвуфера, то проконсультироваться можно прямо в магазине, специалисты MVA знают об этом много, посоветуют нужный объем и тип для имеющегося низкочастотного динамика.

В прошлом выпуске мы, упростив картину до предела, выяснили и убедились: на нижнем басе в машине играет не сабвуфер, а сабвуфер и салон. Всегда вместе, и результат, тот самый, слышимый и желаемый, к которому вы стремитесь, затевая сабвуфер в авто, будет определяться результатами совместной работы одного и другого. На сто процентов совместной.

Господи, дай мне душевный покой,
Чтобы принимать то, что я не могу изменить,
Мужество, чтобы изменить то, что могу,
И мудрость - всегда отличать одно от другого.

Молитва рабби Авраама-Малаха, едва не превратившаяся в банальность от частого цитирования

МОЛИТВА И СМИРЕНИЕ

Наши дизайнеры очень не любят эпиграфы, считая эту литературную форму атавизмом. Однако на этом я настоял, мало того, что он очень нужен в жизни, он несколько раз пригодится конкретно сегодня. Далеко не всё мы в силах изменить, проектируя басовую систему в автомобиле, и главное из того, что не можем, - передаточная функция салона, определяющая итоговую АЧХ на нижних частотах так же решительно и неизбежно, как и АЧХ собственно сабвуфера, показанная им в свободном пространстве.

Что мы знаем о передаточной функции, ну, хотя бы - по прошлому выпуску? Что в предельно упрощённом виде она состоит из горизонтального участка, на котором не влияет на итоговую АЧХ, и из наклонного, где отдача басового громкоговорителя растёт в темпе 12 дБ/окт. со снижением частоты. Частота, на которой появляется этот эффект прогрессирующего усиления басов, зависит от максимального размера салона. Мелкие детали на передаточной функции зависят от подробностей, в том числе - от ширины, высоты, геометрии внутренних поверхностей, их отражающих свойств и т.д., но всё это перестаёт влиять на частотную характеристику, когда мы по-настоящему углубимся в басовую область. Там нет отражений, поскольку нет звуковых волн, звук ниже частоты перегиба создаётся по компрессионному принципу, как будто к салону приделали поршень и с его помощью изменяют давление внутри с требуемой частотой. Там нет поглощения, низкие частоты в этом отношении чрезвычайно живучи, в отличие от верхних, охотно умирающих при падении звуковых волн на мягкие и пористые поверхности. Не случайно ведь все измерительные безэховые камеры в мире сертифицированы до какой-то частоты, ниже которой даже эти помещения, уделанные внутри полуметровым слоем звукопоглощающего материала, перестают быть безэховыми. Лучшие камеры в мире начинают врать ниже 30 Гц, те, что попроще (и тем не менее стоят как чугунный мост) - ниже 50.

Вот и получается: одну из двух главных составляющих образования АЧХ на низких частотах в салоне мы измерить никак не можем, с этим надо смириться, проявив рекомендованную в эпиграфе мудрость.

Смиряться не желают одни лишь профессионалы SPL-соревнований. Они делают то единственное, чем можно повлиять на общий ход передаточной функции: урезают длину салона до минимума. Мы так далеко заходить не собираемся, и не предлагайте...

Периодически возникают вопросы, связанные с индивидуальной передаточной функцией для того или иного автомобиля. Так же периодически мы на них отвечаем: не парьтесь более абсолютно необходимого. Чем сидеть и горевать, что для вашей любимой ласточки такую функцию никто не снял, воспользуйтесь простым рецептом, которым мы не только давно пользуемся, но и опытным путём проверили: пользуемся правильно.

Больше пяти лет назад мы провели сопоставление передаточных функций в разных машинах, с габаритами, статистически преобладающими в общей массе, на этой основе составили свою универсальную передаточную функцию и даже опубликовали её, тогда же, в №8/2000. С тех пор всякий раз, когда у нас появляется возможность сравнить прогнозные характеристики с реальными, измеренными в салоне (при тестировании корпусных сабвуферов или при подготовке обзоров по системам, когда есть исчерпывающая информация по настройке сабвуфера), мы сравниваем свою эмпирическую кривую с практикой, неизменно убеждаясь: с достаточной для практики точностью ею можно пользоваться, забив нужные цифры в нужные клеточки «Спикершопа». Тем, кому и это в лом, даём рецепт ещё более простой, по достоверности результатов уступающий крайне незначительно: в том же «Спикершопе» вводится частота начала подъёма АЧХ, равная 60 Гц. Мы сравнивали: главные отличия «фирменной автозвуковской» универсальной функции от простейшей (график 1) проявляются на инфранизких частотах, где теория продолжает гнать АЧХ вверх, а неизбежная на практике нежёсткость панелей кузова и утечки через щели прибивает её книзу. Но на это, по большому счёту, наплевать, речь идёт о частотах ниже 15 - 20 Гц.

Итак: смиренно взяли типовую передаточную функцию, изменить которую мы не можем, и стали формировать АЧХ сабвуфера так, чтобы в сумме получилось вожделенное басовое чудо. Вооружившись, разумеется, мужеством изменить то, что можно. Приготовьтесь, однако, к тому, что мудрость опять понадобится - изменить при проектировании сабвуфера можно отнюдь не всё.

ТРЕТИЙ ЛИШНИЙ

С этого места и дальше из трёх великих параметров Тиля - Смолла мы будем пользоваться двумя, полностью игнорируя третий. Два, которым повезло - резонансная частота и добротность. Третий, нетрудно сообразить - эквивалентный объём головки. Почему? Потому что, хоть и привыкли они ходить втроём, роль этих параметров при проектировании разная. Резонансная частота и добротность определяют, как будет играть сабвуфер. А эквивалентный объём головки - как он будет при этом выглядеть.

Наша задача - при проектировании сабвуфера выйти на требуемое значение частоты резонанса головки в оформлении (напомним: мы говорим только об оформлении типа «закрытый ящик», всему своё время) и, как очень скоро станет ясно, на требуемое значение итоговой добротности. Они примут нужное значение, когда динамик (со своими значениями Fs и Qts) окажется в ящике определённого, нужного объёма. А нужный объём будет определяться не абсолютными цифрами, а соотношением с эквивалентным объёмом динамика. Пример: есть три головки с одинаковыми значениями резонансной частоты Fs и полной добротности Qts, но с разными значениями эквивалентного объема:

Динамик №1: Fs = 30 Гц; Qts = 0,5; Vas = 30 л.

Динамик №2: Fs = 30 Гц; Qts = 0,5; Vas = 60 л.

Динамик №3: Fs = 30 Гц; Qts = 0,5; Vas = 120 л.

Мы хотим (к примеру), чтобы в итоге у сабвуфера была частота резонанса Fc = 45 Гц при добротности Qtc = 0,7. Первый из перечисленных динамиков выйдет на эти параметры в ящике объёмом 22 л, второй - 45 л, третьему потребуется около 90 л, а итог, АЧХ, будет у всех абсолютно одинаковым.

Поэтому сейчас мы будем говорить о том, какие параметры в оформлении (готовое блюдо) надо приготовить из параметров головки (исходное сырьё), умалчивая о том, какой получится объём, это - следующий шаг, важный, но следующий. Сначала надо определиться, а чего мы, собственно, хотим.

БАС НАРОДА - БАС БОЖИЙ

Своего рода подсказка была в прошлом выпуске, опять в наших традициях основанная не на умозрении, а на практике. Мы вывели обобщённую АЧХ баса, любимую народом, судя по статистике, и АЧХ, выбранную для себя аудиофилами и чемпионами. Не поленитесь, загляните в прошлый номер на страницу 35. Эти АЧХ несколько разные, но обе можно получить с помощью закрытого ящика, а одну (чемпионскую) - почти исключительно с помощью закрытого ящика. Отличие баса, любимого народом, от баса, привеченного аудиофилами, таково: у аудиофилов АЧХ ниже 200 Гц идёт практически горизонтально, в то время как основная масса трудящихся предпочитает подъём характеристики ниже 80 Гц.

В том же номере, но на следующей странице, есть подсказка и для второго, практического шага. Грубо-приблизительно: в отличие от домашней акустики, где резонансная частота определяет, как низко будет играть колонка при сохранении ровной АЧХ, в машине благодаря действию передаточной функции от этого будет зависеть, как громко будет играть сабвуфер. Общее правило: чем ниже резонансная частота сабвуфера в ящике, тем выше будет проходить его АЧХ ниже частоты, где начинается компрессионный эффект. Всё, кажется, дело сделано, вопрос закрыт. Выбираем достаточно (в пределах возможного) низкую частоту сабвуфера в оформлении и наслаждаемся божественным басом. Согласитесь, это было бы уж чересчур просто, чтобы быть правдой. Правда тоже довольно проста, но не настолько. Кроме резонансной частоты важен и другой параметр из оставленных в игре двух.

ДОБРОТА СПАСЁТ БАС

В смысле - добротность. Или спасёт, или загубит, как пойдёт. Это прежде всего зависит от того, что вы хотите получить. Предположим, что вас влекут лавры чемпионов. Или ваши музыкальные пристрастия требуют предельно деликатных манипуляций с басовым регистром (что часто одно и то же). И вы хотите получить настолько ровную, горизонтальную, без малейших следов экстремизма АЧХ, насколько это возможно. Для этого, если речь идёт по-прежнему о закрытом ящике (а она по-прежнему идёт), надо, чтобы спад АЧХ сабвуфера в свободном пространстве начинался там же, где начинается подъём АЧХ передаточной функции. Скажем, на уже упоминавшихся 60 Гц. Пара ударов по клавиатуре - и вот, получено значение объёма ящика, в котором резонансная частота выйдет на заданный рубеж. А какая при этом выйдет добротность? Вот тут-то и находится главный подводный камень. Взгляните на график 2. Взяв заведомо разные головки, мы построили АЧХ в салоне для одной и той же итоговой резонансной частоты, но с разными значениями итоговой добротности головки в ящике Qtc.

При низких значениях добротности АЧХ будет безбожно провалена во всей басовой области, оживая только там, где этого уже не надо: ниже 25 Гц. При высоких значениях добротности появляется так часто наблюдаемый нами в посредственных системах горб на 50 - 60 Гц. А при знаменитой баттервортовской добротности 0,7 АЧХ горизонтальна, как поверхность мирового океана.

Видите, что получилось: резонансную частоту мы ввели, задав определённый объём ящика, а добротность при этом сама встала, куда захотела. Можно попробовать зайти с другого конца, раз нам важна именно добротность. При расчёте задаться значением Баттерворта, а резонансная частота - как получится. Вот, что тогда получится (график 3). При Fc = 60 Гц результаты, естественно, совпадают. Если при требуемом значении добротности резонансная частота уйдёт вверх, АЧХ провалится. Если уйдёт вниз, получим закономерный подъём, но не совсем там, где надо, а на совсем, неприлично низких частотах. Выходит, что надо попасть сразу в два параметра головки, и здесь всё оказывается проще, чем можно было предположить, руководствуясь просвещённым пессимизмом. При выборе головки под аудиофильский, суперинтеллигентный, нейтральный бас надо брать ту, у которой отношение частоты собственного резонанса к полной добротности равно (или близко к) 80.


И НАКОНЕЦ, ПРОСТЫЕ ЧИСЛА

Это - тот самый знаменитый параметр EBP (Enegry Bandwidth Product), по которому определяется, для какого акустического оформления пригодна головка. Только теперь мы им пользуемся и для решения других задач.

Чарующая простота подхода в том, что сами по себе значения Fs и Qts в определённых пределах на выбор не влияют. Важно только их соотношение, а также то, чтобы Fs не оказалась выше 60 Гц. Ведь в закрытом ящике резонасная частота стать выше может (даже обязана), а ниже - никогда. Итог применения первого из «простых чисел»: возьмём, скажем, головку с Fs = 24 Гц и Qts = 0,3. Выбором объёма ящика можно добиться Fc = 60 Гц и Qtc = 0,7. Возьмём другую: Fs = 36 Гц, Qts = 0,45. Итог - тот же, но в другом объёме, который к тому же будет зависеть от Vas головки, мы этого не касаемся. Возьмём головку с Fs = 60 Гц при Qts = 0,7. Она уже имеет нужные итоговые параметры, значит, ящик ей нужен бесконечно большой, то есть - акустический экран. Или free air, если угодно. И всё: вот оно, простое число аудиофила, 80.

А если мы не столь утончены и хотим бас как-то ближе к народу? Для этого резонансную частоту выберем ниже, при этом, как мы знаем, АЧХ на басах поднимется. А добротность? Такую же? А вот и нет. Взгляните на график 4. При низких добротностях совсем беда, но и при баттервортовской - не все гладко. Наиболее же логичная, достаточно мощная, но не горбатая АЧХ получается теперь при более высоком значении итоговой добротности, в районе 0,9 - 1,0. А график 5, где мы закрепили добротность и варьируем резонансной частотой, показывает: Fc = 40 Гц - действительно оптимальная частота резонанса. Ниже - теряем басы или приобретаем горб, выше - получаем нерационально высокую отдачу на инфразвуке, которая будет означать и повышенный ход диффузора со всеми вытекающими (вернее - выскакивающими) последствиями.

Каково простое число для такого варианта? Оно равно (или приблизительно равно, у нас не бухгалтерия, а физика) 45. То есть, если у «голого» динамика Fs = 40 Гц, а добротность Qts = 0,9 (бывают такие, хоть и редко), ему одна дорога: во free air. А если, скажем, Fs = 30 Гц при Qts = 0,65 (бывают куда чаще), дорога лежит в закрытый ящик, и будет счастье. Любителям басового экстрима, не боящимся угробить динамик излишними амплитудами, можно выбрать «простое число» и ниже, но - за свой счёт.

Есть ли «гиблые простые числа»? А как же... Вот, смотрите: если выбрать частоту резонанса сабвуфера в оформлении заведомо выше частоты перегиба передаточной функции, скажем, 80 Гц, когда речь идёт о не совсем мелком автомобиле, то какая ни будь добротность, АЧХ выйдет либо горбатая, либо провалившаяся, либо, что самое трагичное, и то и то одновременно (график 6). Но взгляните на кривую, соответствующую значению Qtc = 0,5. Известны случаи, очень, однако, редкие, когда значение добротности сабвуфера выбиралось таким или ненамного выше. При этом, если одновременно выбрана достаточно высокая частота резонанса, АЧХ получалась вялой по отдаче (график 7), но ровной, а делалось это затем, чтобы получить ценой ослабленной басовой чувствительности лучшие импульсные характеристики сабвуфера. Для таких систем «простое число» оказывается большим, 100 и выше, хотя, вообще-то, такой показатель свидетельствует: головка рождена для работы в фазоинверторе. Но если есть желание - пожалуйста, запретов у нас нет. А что касается фазоинверторов, придёт день, поговорим и о них...

Подготовлено по материалам журнала "Автозвук", апрель 2006 г. www.avtozvuk.com

Очень большое распространение в последние годы получили закрытые АС, которые до недавнего времени были единственным видом АС для высококачественного воспроизведения как в нашей стране, так и за рубежом. И только в последние годы АС с фазоинвертором (АС с ФИ) и АС с пассивным излучателем (АС с ПИ) нарушили монополию закрытых АС. Тем не менее закрытые АС и в настоящее время являются одной из наиболее распространенных конструкций высококачественных АС в Западной Европе и довольно широко выпускаются в США, как это было видно из таблицы:

Страна

Закрытый

ящик

Фазоинвертор

Пассивный

излучатель

Другое

оформление

США

43 %

32 %

9 %

16 %

Европа

61 %

32 %

6 %

1 %

Япония

28 %

62 %

10 %

На рис. 1 представлена типичная закрытая АС и ее электрический аналог. Преимущество закрытой АС заключается в том, что задняя поверхность диффузора головки не излучает и, таким образом, полностью отсутствует «акустическое короткое замыкание». Недостатком закрытых АС является то, что диффузоры их головок нагружены дополнительной упругостью объема воздуха внутри оформления. Наличие дополнительной упругости приводит к повышению резонансной частоты подвижной системы головки в закрытом оформлении ω 01 и, как следствие, к сужению снизу воспроизводимого диапазона частот. Значение дополнительной упругости объема воздуха S В может быть найдено как:

S В =γρ 0 S эфф 2 /V [ 1]

γ – показатель адиабаты;

S эфф – Эффективная площадь диффузора головки;

V – внутренний объем корпуса оформления.

Рис. 1 . Типичная закрытая акустическая система и ее электроакустический аналог.

Эффективной площадью диффузора считают 50-60 % его конструктивной площади. Для круглого диффузора диаметром d S эфф =0,55S =0,44d 2 . Это эквивалентно тому, что эффективный диаметр диффузора составляет 0,8 от конструктивного диаметра. Упругость S В суммируется с собственной упругостью подвеса подвижной системы головки S 0 и в результате резонансная частота головки в закрытом оформлении вычисляется по формуле:

ω 01 =√((S 0 +S B)/m ) = ω 0 √( 1+S B /S 0 ) , [ 2]

где m 0 – масса подвижной системы головки.

Как видно из , упругость воздушного объема внутри оформления обратно пропорциональна этому объему. Упругость подвижной системы можно также выразить через упругость некоторого эквивалентного объема воздуха V Э, имеющего упругость S 0 . Отсюда резонансная частота головки в закрытом оформлении:

ω 01 =ω 0 √(1 + V Э / V )

Чтобы резонансная частота все же не была чрезмерно высокой, иногда применяют головки с более тяжелой подвижной системой, что дозволяет несколько снизить резонансную частоту головки в закрытом оформлении, как это видно из . Однако следует иметь в виду, что увеличение массы подвижной системы снижает чувствительность АС.

Особенно малой эффективностью обладают так называемые малогабаритные акустические системы (MAC), у которых упругость объема внутри оформления существенно больше упругости закрепления подвижной системы головки. Такие системы, у которых упругость подвижной системы определяется упругостью объема воздуха внутри оформления, называются системами «с компрессионным подвесом» головки.

Рис. 2 . АЧХ закрытой системы (ЗЯ)

Неравномерность АЧХ закрытых АС в области низких частот так же, как и открытых, определяется их добротностью (рис. 2). При Q 01 <0,707 частотная характеристика АС равномерно понижается с понижением частоты в область низких частот и неравномерность проявляется как спад на резонансной частоте ω 01 по сравнению с высшими частотами. При 0,707<Q 01 <1 частотная характеристика имеет небольшой пик на частоте ω 1 и далее спад на резонансной частоте ω 01 . Неравномерность частотной характеристики при этом определяется подъемом на пике ω 1 , и спадом на резонансной частоте ω 01 . При Q 01 >1 неравномерность частотной характеристики определяется только ликом на частоте ω 1 относительно горизонтальной части характеристики.

Рис. 3 . Зависимость неравномерности АЧХ закрытой АС от Q 01 .

Неравномерность частотной характеристики в зависимости от добротности закрытой АС приведена на рис. 3. Как следует из рисунка, минимальная неравномерность частотной характеристики закрытых АС имеет место при добротности Q 01 =1 и составляет 1,3 дБ. Желательная же добротность самой головки находится из условия:

Q=Q 01 /√(1+V э фф /V)

Исследования показали, что добротность головок, предназначенных для закрытых АС, не должна превышать 0,8-1. В противном случае головка получается «раздемпфированной». Это означает, что при ее возбуждении, т.е. при подаче на нее напряжения музыкальной или речевой программы, головка помимо колебаний в такт с поданным напряжением будет колебаться и с частотой собственных колебаний, близкой к резонансной частоте. Для слушателей это будет проявляться в том, что к звучанию программы будет примешиваться звучание этой частоты как своего рода «гудение», «нечистота» низких тонов. Отметим также, что если головка помещена в закрытом ящике, ухудшается равномерность частотной характеристики в области средних и высоких частот из-за резонансных явлений в оформлении. Для их устранения внутренние поверхности (особенно заднюю стенку) покрывают звукопоглощающим материалом и заполняют им часть объема. Кроме того, заполнением внутреннего объема рыхлым звукопоглощающим материалом преследуют и другую цель - изменить термодинамический процесс сжатия-расширения воздуха в оформлении.

Без заполнения процесс сжатия-расширения воздуха внутри оформления адиабатический. Заполняя оформление рыхлым звукопоглощающим материалом можно сделать так, чтобы адиабатический процесс сменился на изотермический. В этом случае внутренний объем оформления как бы увеличивается в 1,4 раза, так как коэффициент γ в , составляющий 1,4 для адиабаты, заменяется значением, равным единице для изотермы. Соответственно снижается и резонансная частота закрытой АС. Это снижение в пределе (для компрессионной АС) достигает √1,4, так как для нее можно пренебречь упругостью подвеса головки. В противном случае резонансная частота головки ω 01 может быть найдена как:

ω 01 ’ = ω 01 ((1+0,75 ∙ S/S 0 ) ∙ (1+ S/S 0 )) [ 5]

Как практически определить, что изотермический процесс сжатия-расширения воздуха внутри оформления достигнут? Процесс будет достигнут, если при добавлении внутрь оформления новой порции рыхлого звукопоглощающего материала резонансная частота закрытой АС уже не понижается. Исследования авторов показали, что заполнять внутренний объем оформления более, чем на 60%, нецелесообразно. Вместе с тем количество рыхлого звукопоглощающего материала не должно быть чрезмерным, чтобы активные акустические потери в оформлении и заполнении не были значительны. Следует отметить, что степень влияния активных акустических потерь в оформлении (и заполнении) на ход частотной характеристики зависит, строго говоря, не от их абсолютных значений, а от соотношения активных акустических потерь в оформлении и полных потерь в головке. Потери в головке - это собственные акустико-механические активные потери на внутреннее трение в материале головки, трение о воздух при работе, потери в виде активной составляющей сопротивления излучения и т.д., а также «вносимые» в головку потери.

Чрезмерные активные акустические потери могут быть в АС при некачественном (с акустической точки зрения) выполнении корпуса оформления, креплении головки, при чрезмерном заполнении оформления звукопоглощающим материалом, а также при чрезмерно малых внутренних объемов оформления (V Э /V>8 ).

Пример . Расчитаем объем закрытой АС с нижней граничной частотой 50 Гц, имеющей головку со следующими характеристиками: f=38 Гц, Qts=0,8, Vas=60 л.

  1. Определяем объем оформления из формулы : V=60∙10 -3 /((50/38) 2 -1)=83 л . (результат умножаем на 1000)
  2. Находим добротность головки в закрытом оформлении из формулы : Q 01 =0,8√(1+60/83)=1,05 . В соответствии с рис. 3 минимальная неравномерность АЧХ имеет место при Q 01 =1. Так что полученная неравномерность частотной характеристики из-за пика на частоте ω 1 практически минимальна и составляет всего около 1,5 дБ.

Предлагаемый метод расчета фазоинвертора основан на простейших измерениях, проводимых с вполне определенным экземпляром громкоговорителя, устанавливаемым в акустический фазоинвертор и на номографическом определении размеров последнего.

В первую очередь, руководствуясь рис. 1 и таблицей, необходимо изготовить «стандартный объем» — герметичный фанерный ящик, все стыки которого во избежание утечек воздуха тщательно подогнаны, проклеены и промазаны пластилином.

Малогабаритные колонки для качественного воспроизведения звука

Расчет закрытого ящика (Версия 2)

Акустическое оформление в виде закрытого ящика можно рассматривать как предельный случай ящика-фазоинвертора с бесконечно малым отверстием. Эквивалентная акустическая схема низкочастотной головки в закрытом ящике может быть получена, если в схеме рис. 3 отбросить элементы, относящиеся к инвертору. Соответствующая частотная характеристика громкоговорителя совпадает с уравнением (17) при y3 = y4 = 0.

Среди множества типов частотных характеристик, которые могут быть получены для громкоговорителя в виде закрытого ящика. Наибольший интерес представляют гладкие частотные характеристики Баттерворта второго порядка. Эти характеристики образуются при условии выполнения соотношений между параметрами головки и ящика, выраженных уравнением (27) при f b /f s = 0. Особенностью громкоговорителей с частотными характеристиками Баттерворта второго порядка является то обстоятельство, что частота среза f 3 (29) совпадает с резонансной частотой головки в ящике f c .

Расчет фазоинвертора

В связи с частыми письмами о помощи расчета того или иного акустического оформления, пишу эту статью. Я не буду ни кому рассчитывать оформление, не всегда есть время. Я это сайт создал специально для тех, кому интересна акустика и которые хотят в ней разбираться. Я лучше выложу для ленивых готовые варианты и примеры расчетов, а дальше сами разбирайтесь, крутите мозгами. И так.

В области низких частот работа громкоговорителя не зависит от формы ящика или типа фазоинвертора, а определяется лишь двумя параметрами акустического оформления — объемом ящика-фазоинвертора V и частотой его настройки F b . К нахождению этих величин и сводится в основном расчет акустического оформления.

FAQ по динамикам и сабвуферам

В связи с множественными вопросами, как рассчитать корпуса длядинамиков я выкладываю несколько статей, связанных с расчетом акустического оформления для динамиков. Не забываем, что акустическое оформление важно для НЧ-головок. И так начинаем....

В последнее время стало слышно очень много вопросов про динамики и сабвуферы. Подавляющее большинство ответов можно получить на первых трех страницах любой книги, написанной профессионалами. Материал адресован в первую очередь начинающим, ленивым;) и сельским самодельщикам, подготовлен на основе книг И.А.Алдощиной, В.К.Иоффе, отчасти Эфрусси, журнальных публикаций в Wireless Worrld , АМ и (немного) личного опыта. HЕ использовалась информация из Интернета и ФИДОнета. Материал никоим образом не претендует на полноту освещения проблемы, а представляет собой попытку объяснить на пальцах азы акустики.

Чаще всего вопрос звучит примерно так: "нашел динамик, что с ним делать?", или "Товарищч, а говорят такие сабвуферы бывают...". Здесь мы рассмотрим только один вариант решения этой проблемы: По имеющемуся динамику сделать ящик, с оптимальными параметрами на HЧ, насколько это возможно. Этот вариант сильно отличается от задачи заводского конструктора-натянуть нижнюю частоту системы до необходимой по ТУ величины

Звук в конце тоннеля

"Володя, будешь на складе - захвати порты для фазиков …"
(подслушано в одной из московских установочных студий)

Когда АвтоЗвук был еще маленьким и сидел под крылом Салона АВ , вышли в свет две первые части трилогии о сабвуферах - о том, чего ждать от разных типов акустического оформления и как подобрать динамик для закрытого ящика.

Значительная часть тех, кто, обдумывая житье, решил с пониманием отнестись к басовому вооружению своего автомобиля, этим, в принципе, уже могла бы обойтись. Но не все. Поскольку существует как минимум еще один, чрезвычайно популярный тип акустического оформления, по распространенности не уступающий закрытому ящику.

Фазоинвертор в отечественной литературе, bass reflex, ported box, vented box - в англоязычной - все это, по сути, звукотехническая реализация идеи резонатора Гельмгольца. Идея проста - замкнутый объем соединяется с окружающим пространством с помощью отверстия, содержащего некоторую массу воздуха. Вот именно существование этой массы - того самого столба воздуха, который, по утверждению Остапа Бендера, давит на любого трудящегося, и производит чудеса, когда резонатор Гельмгольца нанимают на работу в составе сабвуфера. Здесь мудреная вещь имени германского физика приобретает прозаическое имя тоннеля (по-буржуйски port или vent) .

Заряжаем....

Потом стал считать объем скрипичной коробки, и работа эта была долгая и увлекательная. …. Объем нельзя уменьшить - скрипка засипит, начнет глухо бубнить. Если увеличить - пронзительно завизжит, басы танут тусклыми и слабыми.…
(А.А.Вайнер, Г.А.Вайнер Визит к Минотавру)

В статье выяснили, чем хороши различные типы акустического оформления и чем плохи. Казалось бы, теперь "цели ясны, за работу, товарищи.." Не тут-то было. Во-первых, акустическое оформление, в которое не установлен собственно динамик - всего лишь с той или иной степенью тщательности собранная коробка. А зачастую и собрать-то ее нельзя, пока не будет определено, какой динамик окажется в нее установлен. Во-вторых, и в этом главная потеха в проектировании и изготовлении автомобильных сабвуферов — характеристики сабвуфера немногого стоят вне контекста характеристик, хотя бы самых основных, автомобиля, где он будет работать. Есть еще и в-третьих. Мобильная акустическая система, одинаково приспособленная для любой музыки — редко достигаемый идеал. Грамотного установщика можно узнать обычно по тому, что, "снимая показания" с клиента, заказывающего аудиоустановку, он просит принести образцы того, что клиент будет слушать на заказанной им системе после ее завершения.

Как видно, факторов, влияющих на решение - очень много и свести все к простым и однозначным рецептам нет никакой возможности, что и превращает создание мобильных аудиоустановок в занятие сильно родственное искусству. Но некоторые общие ориентиры наметить все же можно.

  • Предыдущая

Перед началом проектирования и сборки короба необходимо определиться с выбором динамика. Рекомендуем остановить свой выбор на 10-12 дюймовых импортных динамиках, так как они наиболее часто используются в автомобильных сабвуферах и лучше всего подходят. Как подобрать динамик для сабвуфера мы подробно рассказывали в предыдущей статье. Конструкция короба также имеет важное значение: от нее зависит качество и громкость звучания низких частот.

Какими бывают короба для сабвуфера?

Существует несколько типов ящиков для сабвуфера. От конструкции короба напрямую зависит качество звука , которое Вы получите на выходе. Ниже представлены наиболее популярные типы сабвуферов:

Закрытый ящик — наиболее простой в изготовлении и проектировке, его название говорит само за себя. Низкочастотный динамик помещается в герметичный деревянный корпус, который улучшает его акустические характеристики. Изготовить сабвуфер в авто с таким корпусом довольно просто, однако он имеет самый низкий КПД.

Бандпас 4-го порядка — это тип сабвуфера, корпус которого разделен на камеры. Объемы этих камер разные, в одной из них размещен динамик, а во второй — фазоинвертор (воздуховод). Одной из особенностей этого типа сабвуфера является способность конструкции ограничивать частоты, которые воспроизводит диффузор.

Бандпас 6-го порядка отличается от 4-го порядка наличием еще одного фазоинвертора и еще одной камеры. Есть два типа бандпасов 6-го порядка — первый имеет один фазоинвертор, а второй два (один из них общих для обеих камер). Этот тип короба является наиболее сложным в проектировании, но выдает максимальный КПД.

Фазоинвертор — сабвуфер со специальной трубкой в корпусе. Она выводит воздух и обеспечивает дополнительное звучание от задней части динамика. По сложности в изготовлении и качеству звучания этот тип нечто среднее между закрытым ящиком и бандпасом.

Желая получить наиболее качественное звучание, можно остановить свой выбор на бандпасах. Но конструкция этого типа имеет множество деталей, которые надо тщательно спроектировать и просчитать. Все это можно сделать с помощью специальной программы WinlSD, которая не только определит оптимальный размер и объем сабвуфера, но и создаст его 3D модель, а также просчитает размеры всех деталей.

К сожалению, эта программа требует хотя бы минимальный знаний в этой сфере и рядовому автолюбителю навряд ли удастся сделать все верно с первого раза. Тем более, для того, чтобы программа правильно работала, ей необходимы некоторые параметры динамика, которые также известны не всем. Если Вы не планируете принимать участие в соревнованиях по авто-звуку советуем отбросить бандпасы.

Интересуетесь автотюннингом? Подробная инструкция по установке парктроника своими руками специально для вас!

А вы знаете, что такое типтроник? Читайте о плюсах и минусах этой коробки передач.

Фазоинвертор будет наиболее оптимальным решением для самодельного сабвуфера. Этот тип короба хорош тем, что трубка (фазоинвертор) позволяет лучше воспроизводить самые низкие частоты. Фактически это дополнительный источник звука, который содействует звучанию сабвуфера и повышает КПД.

Какие материалы нам потребуются для сборки сабвуфера?

Материал для изготовления короба сабвуфера должен быть прочным, плотным и хорошо изолировать звук. Для этого отлично подойдет многослойная фанера или ДСП . Основные преимущества этих материалов — доступная цена и простота в обработке. Они достаточно прочны и обеспечивают хорошую шумоизоляцию. Мы будем делать сабвуфер из многослойной фанеры толщиной 30 мм.

Чтобы сделать короб для сабвуфера нам понадобится:

  • Саморезы по дереву (примерно 50-55 мм, 100 штук)
  • Шумоизоляционный материал (шумка)
  • Дрель и шуруповерт (или отвертка)
  • Електролобзик
  • Жидкие гвозди
  • Герметик
  • Клей ПВА
  • Карпет, примерно 3 метра
  • Клемник

Чертежи короба для сабвуфера

В данной статье мы будем делать короб под сабвуфер с 12-ти дюймовым динамиком. Рекомендуемый объем ящика для одного 10-12 дюймового динамика — 40-50 литров . Рассчитать короб под сабвуфер не сложно, вот примерная схема с размерами панелей.

Стоит обратить внимание на минимальное расстояние от стенок корпуса до динамика. Оно, как и объем всего ящика, рассчитывается по внутренней поверхности.

Видео-инструкция: как самому сделать чертеж для сабвуфера

Собираем короб для сабвуфера своими руками

Можно приступать к сборке. Мы используем 12-ти дюймовый динамик Lanzar VW-124.


Его диаметр 30 см, и первое что нужно сделать это вырезать отверстие под динамик. Минимальное расстояние от центра диффузора до стенки сабвуфера — 20 см. Мы отмеряли по 23 см (20 см + 3 см ширина фанеры) от края панели и прорезали отверстие електролобзиком. Далее вырезаем отверстие под фазоинверторную щель, в нашем примере она имеет размер 35*5 см.


Вместо щели можно использовать классический воздуховод — трубку. Теперь собираем фазоинверторную щель и крепим ее к передней панели сабвуфера. Проходим по стыкам жидкими гвоздями и закручиваем саморезами.

Важно очень плотно закручивать саморезы, чтобы не оставить пустотелостей. Они будут создавать резонансные колебания, которые испортят звучание сабвуфера.

Далее собираем боковые стенки короба, предварительно смазав их жидкими гвоздями, и плотно закручиваем саморезами.


На задней крышке короба нужно вырезать небольшое отверстие под клемник. Соединяем все части корпуса. Убеждаемся в том, что мы правильно вырезали и скрепили все части.


Вставляем динамик. Смотрим, любуемся.


Переходим к внутренней отделке короба. Первое, что необходимо сделать это проклеить все стыки и щели эпоксидным клеем или герметиком. Далее с помощью клея ПВА приклеиваем на всю внутреннюю поверхность короба шумоизоляционный материал.




Теперь обтягиваем всю внешнюю плоскость короба карпетом, включая щель фазоинвертора. Крепить его можно на эпоксидный клей или с помощью мебельного степлера.


Далее вставляем и плотно прикручиваем динамик. Сабвуфер почти готов, осталось только протянуть провода от динамика к клемнику и подключить усилитель.


Усилитель мы докупали, но его также можно сделать своими руками. Это довольно сложно, так как требует знаний и практики в области радиотехники. Также можно использовать готовые наборы и схемы для радиолюбителей, вроде Мастер-КИТ, и самостоятельно проводить сборку усилителя. Единственное требование к усилителю — его максимальная мощность должны быть меньше, чем максимальная мощность динамика .

Смотрите также видео-отчет о изготовлении самодельного сабвуфера на 2 динамика

Делаем сабвуфер стелс своими руками

Надоело возить в багажнике огромный ящик? Тогда стелс сабвуфер просто создан для вас. Этот уникальный тип корпуса более практичный, чем классический ящик. Он не стоит квадратной коробкой посреди багажника и занимает меньше места. Зачастую стелс устанавливают во внутренней части крыла, иногда в нише вместо запасного колеса. Минимальный объем ящика, который требует 10-12 дюймовый динамик для нормальной работы — 18 литров.

Для изготовления пассивного стелс сабвуфера нам потребуются:

  • низкочастотный динамик;
  • защитная решетка и розетка для подключения к усилителю;
  • провод для подключения динамика к розетке;
  • многослойная фанера или ДСП (толщина 20 мм);
  • небольшой кусок ДВП;
  • эпоксидный клей;
  • кисточка;
  • стеклоткань;
  • монтажный скотч;
  • полиэтиленовая пленка;
  • саморезы по дереву;
  • дрель, лобзик.

Узнайте, какие документы нужны для замены прав при смене фамилии , и нужно ли еще раз сдавать на права.

Недавно купили новый автомобиль? Прочтите советы по обкатке нового авто от опытных автомобилистов.

Здесь /avtotovary/pokupka-avto/byudzhetnye-krossovery.html можно узнать, как правильно пользоваться и ухаживать за автоматической коробкой передач.

После выбора места, где будет установлен стелс, освобождаем багажник и приступаем к изготовлению корпуса. Можно снять обшивку багажника в том месте, где будет установлен сабвуфер, чтобы поместить его еще ближе к крылу. Первым делом стелем на пол багажника полиэтиленовую пленку. Она выполняет сразу две функции: защищает обшивку багажника от эпоксидного клея и позволяет нам сделать крепление, к которому мы прикрутим днище сабвуфера. Далее обклеиваем внутреннюю сторону крыла монтажным скотчем в два слоя.


Нарезаем стеклоткань небольшими кусками, примерно 20х20 см. На малярный скотч накладываем куски стеклоткани и проклеиваем эпоксидным клеем. Накладывать стеклоткань лучше внахлёст, чтобы не было очевидных стыков и швов.


Лепим слои стеклоткани друг на друга, попутно смазывая их эпоксидным клеем, пока толщина листа не достигнет 10 мм (примерно 4-5 слоев).


Материал будет застывать примерно 12 часов. Для ускорения процесса можно использовать лампу. Теперь вырезаем дно сабвуфера и приклеиваем к нашему корпусу. Стык обрабатываем герметиком или проклеиваем эпоксидной смолой.


В этом конкретном случае форму нужно подогнать под петли багажника, чтобы наш самодельный сабвуфер не мешал ему закрываться. После того, как мы отрезали все лишнее, вырезаем из ДСП боковые стенки и верхнюю крышку. Округлую часть изготавливаем из фанеры, мы это делали “на глаз”.

Чтобы фанере было проще придать округлую форму, ее необходимо сначала намочить, придать ей нужную форму, закрепить и дать высохнуть.

Листы ДСП необходимо проклеить эпоксидным клеем или герметиком, а затем скрепить саморезами. Короб из стекловолокна также приклеиваем с помощью эпоксидной смолы, а когда она высохнет — скрепляем саморезами.


Для лучшей герметизации можно проклеить швы еще раз . Мы наложили еще один слой эпоксидного клея и прижали конструкцию песком, чтобы клей лучше взялся.


Далее мы можем замерить переднюю панель и вырезать ее. С помощью лобзика вырезаем круг для динамика. Для того, чтобы надежно прикрепить переднюю панель к корпусу, нужно закрутить ее саморезами со всех сторон. То есть на всей внутренней части панели нужно установить бруски, на расстоянии чуть большем, чем толщина фанеры (в нашем случае мы прикрепили бруски на расстоянии примерно 25 мм от края панели). Благодаря этому мы сможем закрепить переднюю часть сверху, снизу, по бокам, и самое главное — надежно прикрепить ее к округлому элементу.


Вырезаем отверстие в торце для розетки.


В конце было решено добавить еще два слоя стеклоткани и эпоксидного клея на изогнутую часть корпуса для стелс сабвуфера.


Проводим окончательную сборку: устанавливаем розетку и подключаем к ней динамик, но пока не прикручиваем его. Далее есть два варианта — покрасить сабвуфер, либо обтянуть карпетом. Покрасить немного сложнее, так как надо сначала выровнять поверхность. Для этого мы использовали универсальную шпаклевку.


Выравниваем все наждачной бумагой, грунтуем и красим. Сабвуфер готов!