Сделаем ветряной генератор своими руками. Самодельный ветрогенератор для дома и дачи: принципы работы, схемы, какой и как делать Крыло для ветряка из алюминия

Приходится , опираясь на экспериментальные результаты или отрывочные сведения, почерпнутые из разных источников. Рассмотрим важный вопрос, возникающий при создании ветряка - устройство лопастей.

Как работает простой ветрогенератор?

Существует два типа ветрогенераторов:

  • горизонтальные
  • вертикальные

Разница состоит в расположении оси вращения. Наиболее производительными считаются , напоминающие своими формами самолет с пропеллером. Винт - это крыльчатка ветряка, хвост - устройство наведения на поток ветра, автоматически разворачивающее ось по направлению движения воздуха.

При воздействии ветра на крыльчатку возникает вращающий момент, передающийся на ось генератора. В его обмотках возбуждается электроток, который заряжает . Они, в свою очередь, отдают заряд на инвертор, изменяющий параметры тока и выдающий на потребляющие приборы стандартное напряжение 220 В 50 Гц.

Существуют более простые комплексы, где с генератора запитываются сразу потребители, но такая система никак не защищена от скачков или пропадания напряжения. Вариант используется только для освещения или привода насосов, качающих воду.

Какая форма лопасти является оптимальной?

Основной элемент горизонтального ветряка - крыльчатка . Она больше всего напоминает пропеллер, хотя выполняет абсолютно противоположные функции. принимают на себя энергию воздушного потока, перерабатывая ее во вращательное движение. От их конфигурации напрямую зависит эффективность работы крыльчатки и всего комплекта в целом.

Горизонтальные устройства имеют крыльчатки, снабженные большим количеством лопастей. Обычно их больше 3. В этом вопросе существует зависимость числа лопастей от производительности. Дело в том, что с возрастанием числа принимающих плоскостей падает мощность крыльчатки, а с убыванием - чувствительность. Поэтому выбирают «золотую середину», принимая среднее число лопастей.

Важно! Большое число лопастей увеличивает фронтальную нагрузку на устройство, создавая опрокидывающее усилие на основании мачты и сильное осевое давление на крыльчатку, разрушающее подшипники генератора.

На практике создано большое количество разных устройств, имеющих форму крыльчатки от простых секторов окружности, немного развернутых по радиусной оси, до сложных вариантов с тщательно просчитанной аэродинамикой, испытанных в разных условиях. Результаты испытаний показали, что оптимальной формой является модель, приближенная к пропеллеру. Такая лопасть несколько расширяется от центра (обтекателя) крыльчатки и плавно сужается к концу.

Преимуществом этого вида является равномерное распределение нагрузок на опорный подшипник, поверхность лопасти и всю систему ветряка в целом. Поток ветра воздействует на все участки с одинаковой силой, но, если расширить лопасть к концу, то получится достаточно длинный рычаг, перегружающий подшипник и выламывающий лопасти. Отсюда возникла такая форма, с небольшими изменениями используемая практически на всех ветряках.

Выбор вида

Вариантов или видов лопастей для горизонтальных ветряков существует немного. Причина этого кроется в самой конструкции крыльчатки - создавать сложные формы или конфигурации там попросту негде. Тем не менее, разработки наиболее удачного варианта ведутся постоянно, на сегодня можно выделить несколько видов:

  • твердолопастные крыльчатки

Твердые лопасти изготавливаются из различных материалов сразу в определенной форме, парусные имеют совершенно другую конструкцию. Основой является рамка, на которую натягивается плотное полотно таким образом, чтобы одна из сторон была не прикреплена к рамке. Получается лопасть треугольной формы с одной стороной (от центра к одной из вершин), не закрепленной к основе.

Поток ветра создает давление на парус и придает ему оптимальную форму для схода с плоскости, в результате чего колесо начинает вращаться. Вариант имеет преимущество в массе и весе колеса, но нуждается в постоянном наблюдении за состоянием ткани и крыльчатки в целом.

Для самостоятельного изготовления обычно используют подручные материалы. Учитывая сложный профиль лопастей, хорошим вариантом становится использование листового металла или пластиковых труб.

Расчет лопастей

На практике мало кто вычисляет параметры лопастей, поскольку для этого надо обладать специальной подготовкой и располагать данными. Большинство значений, нужных для расчетов, необходимо сначала отыскать, некоторые из них и вовсе будут известны только после запуска ветряка. Кроме того, для большинства видов до сих пор нет математической модели вращения, что делает расчеты бесполезными.

Чаще всего производится подбор диаметра крыльчатки по требующейся мощности, выполняемый по таблице:

Как вариант, можно использовать онлайн-калькулятор , позволяющий получить готовый результат за секунды, надо только подставить в окошечки программы собственные данные.

Необходимо учитывать, что расчеты такого устройства, как крыльчатка, не будут иметь достаточной точности из-за большого количества тонких эффектов и неизвестных величин, поэтому, чаще всего, прибегают к экспериментальному подбору формы и размера.

Материал для изготовления

Прежде, чем начать работы по созданию крыльчатки , надо определиться с материалом. Выбор производится из того, что имеется в наличии, или из материалов, более знакомых пользователю и доступных для обработки. Требования к материалу для изготовления лопастей:

  • прочность
  • малый вес
  • легкость обработки
  • возможность придания нужной формы или наличие ее у заготовки
  • доступность

Из всех возможных вариантов опытным путем были выделены несколько наиболее удачных. Рассмотрим их подробнее.

Трубы ПВХ

Использование канализационных труб ПВХ большого диаметра позволяет быстро и недорого получить вполне качественные лопасти. Пластик не боится воздействия влаги, легко обрабатывается. Самым ценным качеством является наличие у заготовки формы ровного желоба, остается лишь правильно отрезать все лишнее.

Простота изготовления и дешевизна материала в сочетании с эксплуатационными качествами пластика сделали трубы ПВХ самым ходовым материалом при изготовлении самодельных ветряков. К недостаткам материала можно отнести его хрупкость при низких температурах.

Алюминий

Лопасти из алюминия долговечны, прочны и не боятся никаких внешних воздействий . При этом, они тяжелее, чем пластиковые и требуют тщательной балансировки колеса. Кроме того, работа с металлом, даже таким податливым, как алюминий, требует наличия навыков и подходящего инструмента.

Затрудняет работу и форма материала - чаще всего используется листовой алюминий, поэтому мало изготовить лопасти, надо придать им соответствующий профиль, для чего придется сделать специальный шаблон. Как вариант, можно сначала изогнуть лист по оправке, затем приступить к разметке и резке деталей. В целом, материал более устойчив к нагрузкам, не боится температурных или погодных воздействий.

Стекловолокно

Такой выбор - для специалистов. Работа со стекловолокном сложна, требует навыков и знания множества тонкостей. Порядок создания лопасти включает в себя несколько операций:

  • изготовление деревянного шаблона, покрытие его поверхности воском, мастикой или иным материалом, отталкивающим клей
  • изготовление одной половины лопасти. На поверхность шаблона наносится слой эпоксидки, на который тут же укладывается стеклоткань. Затем снова наносится эпоксидка (не дожидаясь засыхания предыдущего слоя) и опять стеклоткань. Таким образом создается одна половина лопасти нужной толщины
  • подобным образом изготавливается вторая половина лопасти
  • после застывания клея половинки соединяются при помощи эпоксидки. Стыки зашлифовываются, в торец вставляется втулка для присоединения к ступице

Технология сложна, требует времени и умения работать с материалами. Кроме того, эпоксидная смола имеет неприятное свойство закипать в больших объемах, что создает постоянную угрозу испортить всю работу. Поэтому выбирать стеклоткань следует только опытным и подготовленным пользователям.

Древесина

Работа с деревом достаточно хорошо знакома для большинства пользователей, но создание лопастей - задача достаточно сложная. Мало того, что форма изделия сама по себе непроста, так еще и потребуется изготовить несколько одинаковых неотличимых друг от друга образцов.

Решение такой задачи по плечу далеко не всем. Кроме того, готовые изделия надо качественно защитить от воздействия влаги, пропитать олифой или маслом, покрасить и т.д.

Древесина обладает массой отрицательных качеств - она склонна к короблению, растрескиванию, гниению. Впитывает и легко отдает влагу, что изменяет массу и баланс крыльчатки. Все эти свойства делают материал не лучшим вариантом выбора для домашнего мастера, поскольку лишние осложнения никому не нужны.

Создание лопастей поэтапно

Рассмотрим наиболее распространенный вариант изготовления лопастей. В качестве материала используется труба ПВХ диаметром порядка 110-160 мм:

  • отрезаются куски трубы по длине лопастей
  • вдоль отрезка наносится линия, от которой в обе стороны отмеряются 22 мм. Получится 44 мм - ширина одной лопасти
  • с противоположного торца делается то же самое
  • крайние точки с одной стороны центральной линии соединяются по прямой. Со второй стороны наносится рисунок формы лопасти
  • вырезается лопасть, свободный конец аккуратно закругляется, кромки обрабатываются наждачной бумагой или напильником
  • лопасти присоединяются к ступице

Форма лопастей имеет следующее строение:

  • торцевые части одинаковы по ширине - 44 мм
  • посередине ширина лопасти составляет 55 мм
  • на расстоянии 0,15 длины ширина лопасти составляет 88 мм

Для удобства расчета лопастей из ПВХ труб создана замечательная программа в формате эксель. Данная программа создана специально для расчета лопастей из обычных канализационных труб, которые часто для этого используются в виду доступности и дешевизны. Программа взята с форума windpower-russia.ru , на момент написания статьи это последняя версия программы, так же там есть и предыдущие версии.

Скачать - Расчет лопастей ветрогенератора

В программе есть все данные и характеристики будущего винта. В желтые поля нужно вводить свои данные, такие как диаметр винта, количество лопастей, нужную быстроходность, расчетную скорость ветра и прочее. В итоге в зеленых ячейках таблицы произойдет расчет всех показателей будущего винта, таких как стартовый момент, обороты, мощность в ваттах, крутящий момент, КИЭВ и прочие. Владельцы компьютеров на windows я думаю знакомы с эксель и легко разберутся, а владельцам устройств на андройд можно скачать приложение для работы с эксель из маркета, например Kingsoft Offoce и воспользоваться встроенным офисным пакетом. Ниже скриншот.

Сама лопасть рассчитывается вводя данные в желтые ячейки с красными цифрами. Вводятся размеры кончика лопасти фронт и тыл, так же середины, и на радиусе 0,2R. От корня до 0,2R желтые поля, которые можно подогнать вручную под форму получившейся лопасти. Ниже скриншот ввода координат лопасти фронт и тыл.

>

Процесс работы программы таков. Сначала вводите диаметр трубы, вес трубы п/м, диаметр будущего винта, быстроходность и нужную скорость ветра, количество лопастей. А далее ниже изменяете фронт и тыл лопасти смотря на КИЭВ, мощность и обороты. В общем подгоняете винт под свой генератор. В результате ниже у вас появятся готовые координаты для нанесения на трубу. Ниже скриншот где в удобном виде все данные лопасти, его можно увидеть перейдя в таблице на вкладку "геометрия лопасти".

>

Из трубы лопасти вырезаются так, вдоль трубы чертится ровная линия, чтобы не ошибиться можно чертить литию по надписи вдоль трубы. Или трубу поставить вертикально по строительному уровню и им же отчертить вертикальную линию. Далее на этой линии сделать отметки радиуса лопасти, 20-ть точек. А далее уже координаты фронтальной части лопасти и тыльной. Фронт это та часть лопасти, которой она вращается вперед, а тыл задняя часть. Ну а дальше соединить точки и вырезать заготовку из трубы. Вырезать можно полотном по металлу вручную, или лобзиком, а некоторые даже болгаркой умудряются вырезать.

После останется вырезанные заготовки обработать, закруглить края фронтальной части лопасти, и заострить тыльную часть. Это делать нужно обязательно так как программа считает уже с учетом заостренной тыльной кромки лопастей, Заострять можно как болгаркой на шлифовальном круге, так и на наждачном станке. Ниже картинка как обрабатывать кромки лопасти.

>

Подгоняя винт под генератор особое внимание обращайте на быстроходность. Понятно что трехлопастные винты с быстроходностью Z5-6 имеют большие обороты, но пока они не выйдут на эту быстроходность, не раскрутятся, мощность очень маленькая. А если генератор слишком рано дает зарядку, то он не даст винту раскрутится и будет большой недобор мощности. Тут надо максимально соотнести мощность генератора и винта, чтобы их мощности совпадали на всем протяжении оборотов, тогда эффективность всей системы будет максимальной. Тоже касается и много-лопастных винтов, у них обычно выше стартовый момент что хорошо для генераторов с существенным залипанием, будут хорошо стартовать Но обороты небольшие из за быстроходности Z3-4, поэтому рост оборотов не такой большой и требует более тихоходного генератора.

Если поискать и посмотреть в интернете, то многие для своих самодельных ветрогенераторов делают лопасти именно из пластмассовых труб. Ну это и понятно, так-как канализационные трубы хорошо подходят для этих целей, доступны и дешевы. Но конечно не все, так серую трубу особо не жалуют, так-как она быстро деформируется и очень слабая. Больше всего подходят трубы рыжего цвета, они и форму держат, и прочность хорошая. Лучшие трубы из чистого ПВХ, но сейчас все больше их делают не понятно из чего, там и полипропилен и другое, что тоже не подходит для лопастей ветрогенератора.

Ну это ладно, самая главная ошибка людей это изготовление лопастей без всяких расчетов и подгонки под генератор, а ведь лопасти это та часть ветрогенератора, которая преобразует энергию ветра, и на сколько хорошо они это делают зависит общий КИЭВ ветрогенератора (коофициент использования энергии ветра).

Для расчета лопастей из ПВХ труб была создана простая, но эффективная программка в формате эксель. В этой программке легко рассчитать винт под конкретный генератор. Вводя координаты будущей лопасти можно видеть как изменяются все нужные параметры винта, это обороты при разной скорости ветра, КИЭВ, крутящий момент, стартовый и другие параметры.

Но многие вырезают лопасти на глаз и я с помощью программки проанализировал КИЭВ вот такой, как на скриншоте ниже лопасти, очень часто приходится видеть лопасти из труб именно такой формы.

Такие лопасти часто делают, это самое простое, две линии всего прочертить на трубе и вырезать, обработать кромки и готово. Но КИЭВ таких лопастей все 0,2 в трехлопастном варианте на малых диаметрах труб. Лучше показатели если увеличить количество лопастей до 6 , 8 но быстроходность при этом снижается, а нам как известно нужна максимальная мощность лопастей при как можно больших оборотах от каждой скорости ветра.

Ниже скриншоты такой лопасти.

Здесь трёх лопастной винт из 110-й трубы диаметром 1,2м., и максимальная мощность при быстроходности 3,8.

>

А это уже 6 лопастей, результат чуть чуть лучше.

>

Так-же винт из 160-й трубы вырезанный по такому принципу тоже имеет невысокий КИЭВ и быстроходность.

>

Если 6 лопастей, то лучше.

>

Так-же можно увеличить диаметр к примеру до 1,7м и посмотреть.

>

Лучше показатели у больших винтов, вырезанных из труб большего диаметра, к примеру из трубы 320мм.

>

>

>

А вот экселька с последней трубой 320мм в диаметре - rasshet3D2.5Z5.5T3200mm.xls

Универсальная лопасть.

Специально для тех кто хочет вырезать лопасти с относительно высоким КИЭВ я с помощью программки вывел некую универсальную лопасть. Она вырезается чуть сложнее, но имеет более высокий КИЭВ и быстроходность. На диаметрах труб 110-160 такая лопасть имеет КИЭВ 0,27-0,33при быстроходности Z3,5-5,5, но на больших винтах КИЭВ переваливает за 0,4 и быстроходность увеличивается.

вот скриншот для 110-й трубы и 160-й. Если удлинять лопасть, то КИЭВ падает совсем чуть чуть.

>

>

>

Здесь экселька с этой лопастью - rasshet3D1500.xls

Как вырезать такую лопасть без программы.

Рассчитывается такая лопасть очень легко с помощью калькулятора. Все расчеты отталкиваются от диаметра трубы. Для начала нужно диаметр трубы разделить на 5, к примеру для 110-й трубы 110:5=22мм, а для 160-й трубы 160:5=32мм.

22*2=44 мм, расстояние от корня лопасти 0%,

Второй 22*488мм, расстояние 15%,

Третий 22*2,5=55мм, расстояние 50%,

Четвертый 22*2=44мм, расстояние 100% кончик.

Все эти точки нужно соединить и это будет фронт лопасти. Для креплении лопасти нужно провести еще одну линию на которой сверлятся отверстия для крепления лопасти, линия проводится отступив от первой линии 22 мм.

После вырезания, кромки лопасти нужно обработать таким образом, так-как при расчете учитывается обработка кромок именно таким образом чтобы все углы по длинне лопасти совпадали с расчетными.

На рисунке ниже я попробовал показать как это нужно делать. За основу как я уже писал выше берется диаметр и делится на 5, полученную цифру условно можно обозначить Х. далее от этой буквы на рисунке стоят цифры, это процент, на который нужно умножить Х.

Тогда получаются такие координаты.

>

Первая линия нулевая, это тыл будущей лопасти.

А далее первая точка от корня 0%, можно обозначить так, точка А-Х-1-0%, где А- точка, Х - это цифра получившиеся при делении диаметра на 5, 1- это множитель, 0- это расстояние от корня лопасти - радиус по длинне лопасти.

Линия для крепления лопасти.

А-Х-1-0% = 22мм, радиус лопасти 0мм

Б-Х-4-15% = 88мм, радиус лопасти 112,5мм

В-Х-2,5-50% = 55мм, радиус лопасти 375мм

Г-Х-1-100% = 22мм, радиус лопасти 750мм

Линия крепления лопастей.

Д-Х-0,5 = 11мм

Е-Х-0,5 = 11мм

По 11 миллиметров от самой первой линии-тыл, в сторону фронта, эта линия для крепления лопасти.

Здесь я надеюсь все понятно. Эта универсальная лопасть хорошо подходит к разным диаметрам труб, и по длинне лопасть можно удлинять и укорачивать. Из трубы 110мм можно делать винт диаметром до 1,5м, дальше просто лопасти очень слабые будут. Из 160 до 1,8м и т.д. При этом чем больше диаметр трубы и размер винта, тем лучше КИЭВ.

Но лучше конечно рассчитывать индивидуально под генератор и нужную скорость ветра. А если нет возможности, то можно применять эту универсальную лопасть, и просто запомнить как вырезать. Я уже опробовал винт диаметром 1,3м из 110-й трубы, четырех лопастной, работает хорошо, оборотистый.

Ветрогенераторы, в том числе и самодельные, все чаще используются в качестве альтернативного источника получения энергии. Мачта, турбина, флюгер и ветряное колесо – все, что необходимо для изготовления ветряка. Из этого набора приобрести придется лишь электрический генератор для преобразования энергии ветра в электрическую энергию. Все остальные компоненты можно сделать самостоятельно из подручных материалов Сборка ветряного колеса и изготовление лопастей ветрогенератора будут рассмотрены в данной статье.

Перед самостоятельной сборкой ветрогенератора стоит определиться с той мощностью, которую необходимо получать от ветряка. Эта мощность напрямую зависит от силы ветра в регионе, диаметр ветряного колеса и количество лопастей. И если на силу ветра человек никак повлиять не может, то определиться с требуемыми параметрами лопастей придется заранее. В таблице ниже приведены параметры ветряного колеса (диаметр колеса при определенном количестве лопастей) и вырабатываемая ветрогенератором мощность при скорости ветра 4 м/с.

Из таблицы видно, что ветрогенератор мощностью в 50…100 кВ вполне можно изготовить из подручных материалов.

После определения с требуемым количеством и размерами лопастей ветрогенератора можно переходить к их изготовлению. Для этого необходимо выбрать тип лопастей: лопасти парусного типа (как у ветряных мельниц) или лопасти крыльчатого профиля. Лопасти парусного типа имеют простую конструкцию, однако они способны преобразовывать лишь 10-12% энергии потока ветра, так как они не используют аэродинамические возможности ветровых потоков. Внутренняя и внешняя стороны лопасти крыльчатого профиля имеют разную площадь, благодаря чему создается разница давления воздуха на противоположные стороны крыла. Полученная аэродинамическая сила делает использование ветрового потока гораздо более эффективным, а коэффициент использования энергии ветра может достигать 0,4 (40% энергии ветра преобразуются в полезную работу).

В качестве материалов или заготовок для изготовления лопастей ветрогенератора можно использовать ПВХ трубы, алюминий или стекловолокно.

Лопасти ветрогенератора из ПВХ труб

ПВХ трубы уже обладают всеми необходимыми характеристиками для изготовления лопастей: они легкие, достаточно прочные, имеют изогнутую форму. При использовании ПВХ труб для изготовления лопастей стоит помнить, что пластик все-таки не имеет хороших характеристик при выдерживании нагрузки на разрыв. Поэтому из-за большой скорости вращения лопастей ветрогенератора (скорость движения конечной части лопасти двухлопастного колеса ветрогенератора исчисляется сотнями метров в секунду), необходимо уменьшать длину лопасти и, тем самым, увеличивать количество лопастей (в соответствии с таблицей). Кроме того, толщина стенки ПВХ трубы должна быть не менее 4мм.

В качестве шаблона для лопастей можно использовать приведенный ниже рисунок, распечатав который необходимо приложить к стенке трубы, обвести маркером и вырезать лопасть из трубы. Места разрезов и края лопастей необходимо зашлифовать и округлить.

Для соединения лопастей необходимо подготовить металлическое основание, на котором и будут закреплены все лопасти ветрогенератора. Размеры диска необходимо подбирать индивидуально, учитывая параметры электрического генератора (диаметр выходного вала), который будет использоваться для ветряка.

Лопасти для ветрогенератора из алюминия

Алюминиевые лопасти, по сравнению с пластиковыми, обладают лучшими прочностными характеристиками, как на разрыв, так и на изгиб. Однако бОльшая масса лопастей потребует дополнительных усилителей в конструкции колеса и мачты ветрогенератора. Один из возможных вариантов изготовления алюминиевых лопастей приведен ниже.

Существенным недостатком алюминиевых лопастей можно назвать сложность в изготовлении, т.к. в любом случае для этого понадобятся алюминиевые заготовки и специальные инструменты для обработки металла и его сварки.

Лопасти ветрогенератора из стекловолокна

Стекловолокно можно назвать идеальным материалом для изготовления лопастей ветрогенератора из-за отличных характеристик по прочности, аэродинамическим показателям и массе. Однако изготовление лопастей из стекловолокна достаточно трудоемкий процесс, требующий особых навыков и опыта работы с деревом и стеклотканью.

Шаблоны матрицы лопасти ветряного колеса диаметром 2 метра приведен ниже.

Для изготовления лопастей из ветрогенератора необходимо подготовить деревянную матрицу, которая вытачивается из деревянного бруса по шаблону. После этого форма натирается воском и наносится слой эпоксидной смолы, на который укладывается лист стеклоткани. Затем поверх стеклоткани накладывается еще один слой эпоксидной смолы и снова слой стеклоткани. Одна лопасть состоит из 3-5 слоев стекловолокна. После высыхания мы получаем половину лопасти ветрогенератора. Получившиеся половинки лопастей склеиваются между собой эпоксидной смолой, а во внутренний торец вклеивается деревянная пробка, которая будет служить основой для крепления лопасти к ступице колеса.

Балансировка лопастей ветрогенератора

По завершении изготовления лопастей ветрогенератора и сборки колеса необходимо проводить его балансировку.

При балансировке колесо должно свободно вращаться на испытательном стенде, при этом плоскость соединительного узла колеса была строго параллельна вертикальному подвесу. Проверка балансировки заключается в следующем: колесо останавливается и отпускается. Затем проворачиваем колесо вручную примерно на угол, равный 360/число лопастей, снова останавливаем и отпускаем. Если остановленное и отпущенное колесо начинает вращаться, значит, та часть колеса, которая стремится вниз, тяжелее. Определив более тяжелую лопасть необходимо сточить одну из ее граней, дабы уменьшить ее вес.

После выравнивания масс всех лопастей ветрогенератора можно выполнить еще одно испытание: на расстоянии 2мм от лопастей по обе стороны устанавливаются планки, а затем следим, чтобы лопасти не задевали планки при вращении.

После этого можно приступать к окончательной сборке и подключению ветрогенератора.

С давних пор человечество использует силу ветра в своих целях. Ветряные мельницы, парусные корабли знакомы многим, про них пишут в книгах и снимают исторические фильмы. В наше время ветряной электрогенератор не потерял свою актуальность, т.к. с его помощью можно получить бесплатное электричество на даче, которое может пригодиться, если отключат свет. Поговорим о самодельных ветряках, которые можно собрать из подручных материалов и доступных деталей с минимумом затрат. Для вас мы предоставили одну подробную инструкцию с картинками, а также видео идеи еще нескольких вариантов сборки. Итак, давайте рассмотрим, как сделать ветрогенератор своими руками в домашних условиях.

Инструкция по сборке

Существуют несколько типов ветряных установок, а именно – горизонтальный, вертикальный и турбина. У них есть принципиальные различия, свои плюсы и минусы. Однако принцип работы всех ветрогенераторов одинаков - энергия ветра преобразуется в электрическую и накапливается в аккумуляторах, а уже с них уходит на нужды человека. Самый распространенный вид - это горизонтальный.

Он знаком и узнаваем. Преимущество горизонтального ветрогенератора - более высокий КПД по сравнению с другими, так как лопасти ветряка всегда находятся под действием воздушного потока. К недостаткам можно отнести высокое требование к ветру – он должен быть сильнее 5 метров в секунду. Этот тип ветряка сделать проще всего, поэтому его часто берут за основу домашние мастера.

Если вы решили попробовать свои силы в сборке ветрогенератора своими руками, вот несколько рекомендаций.

Начинать нужно с генератора - это сердце системы, от его параметров будет зависеть конструкция винтового узла. Для этого подойдут автомобильные генераторы отечественного и импортного производства, есть сведения о использовании шаговых двигателей от принтеров или прочей оргтехники. Велосипедное мотор-колесо также можно использовать, чтобы самому сделать ветряк для получения электричества. В целом, может подойти практический любой мотор или генератор, однако его обязательно необходимо проверить на эффективность.

Определившись с преобразователем энергии, нужно собрать редукторный узел для повышения оборотов на валу генератора. Один оборот пропеллера должен равняться 4-5 оборотам на валу генераторного узла. Однако эти параметры подбираются индивидуально, исходя из мощности и особенностей вашего генератора и лопастного узла. В качестве редуктора может выступать деталь от болгарки или система ремней и роликов.

Когда собран узел редуктор-генератор, приступают к выяснению его сопротивления крутящему моменту (грамм на миллиметр). Для этого нужно сделать плечо с противовесом на валу будущей установки, и с помощью груза выяснить при каком весе плечо пойдет вниз. Приемлемым результатом считается менее 200 грамм на метр. Размер плеча в этом случае принимается за длину лопасти.

Многие думают, что чем больше лопастей, тем лучше. Это не совсем верно. Нам нужны большие обороты, а много винтов создают большее сопротивление ветру, так как изготавливаем мы их в домашних условиях, в результате чего в какой-то момент набегающий поток тормозит винт и КПД установки падает. Вы можете использовать двухлопастной винт. Такой пропеллер при нормальном ветре может раскрутиться более 1000 оборотов в минуту. Сделать лопасти самодельного ветрогенератора можно из подручных средств - от фанеры и оцинковки, до пластика от водопроводных труб (как на фото ниже). Главное условие – материал должен быть легким и прочным.

Легкий винт повысит КПД ветряка и чувствительность к воздушному потоку. Не забудьте сбалансировать воздушное колесо и убрать неровности, иначе во время работы генератора будете слушать завывание и вой, а вибрации приведут к быстрому износу деталей.

Следующий важный элемент, это хвост. Он будет держать колесо в потоке ветра, и поворачивать конструкцию в случае изменения его направления.

Делать токосъемник или нет, решать вам. Это усложнит конструкцию, однако избавит от частых скручиваний провода, что чревато обрывами кабеля. Конечно, при его отсутствии вам придется иногда самостоятельно раскручивать провод. Во время пробного запуска ветрогенератора не забудьте о технике безопасности, крутящиеся лопасти представляют большую опасность.

Настроенный и сбалансированный ветряк устанавливают на мачту, высотой не ниже 7 метров от земли, закрепленную распорными тросами. Далее не менее важный узел — накопительный аккумулятор. Чаще всего используют автомобильный кислотный аккумулятор. Подключать выход самодельного ветрогенератора непосредственно к батарее нельзя, это нужно сделать через реле зарядки или контроллер, который можно собрать самому или же приобрести готовый.

Принцип работы реле сводится к контролю за зарядом и нагрузкой. В случае полного заряда батареи, оно переключает генератор и аккумулятор на нагрузочный балласт, система стремится всегда быть заряженной, не допуская перезаряда, и не оставляет генератор без нагрузки. Ветряк без нагрузки может достаточно сильно раскрутиться и повредить выработанным потенциалом изоляцию в обмотках. К тому же высокие обороты могут стать причиной механического разрушения элементов ветряного генератора. Далее стоит преобразователь напряжения с 12 на 220 вольт 50 Гц для подключения бытовых приборов.

Сейчас в интернете полно схем и чертежей, где мастера показывают, как сделать ветрогенератор на мощных магнитах самостоятельно. Настолько ли они эффективны, как обещают – вопрос спорный. Но попробовать собрать ветряную электрогенерирующую установку для дома стоит, а потом решить, как ее улучшить. Важно получить опыт и тогда уже можно замахнуться на более серьезный аппарат. Свобода и многообразие самодельных ветряков настолько обширна, а элементная база разнообразна, что нет смысла описывать их все, основной смысл остался тем же - поток ветра раскручивает винт, редуктор повышает обороты вала, генератор выдает напряжение, далее контроллер держит уровень заряда на аккумуляторе, а с него уже идет отбор энергии для различных нужд. Вот по такому принципу можно сделать ветрогенератор своими руками в домашних условиях. Надеемся, наша подробная инструкция с фото примерами разъяснила вам, как изготовить подходящую модель ветряка для дома или дачи. Также рекомендуем ознакомиться с мастер-классами по сборке самодельного устройства в видео формате.

Наглядные видеоуроки

Чтобы легко сделать ветрогенератор для получения электричества в домашних условиях, рекомендуем ознакомиться с готовыми идеями на видео примерах:

Вот мы и предоставили все наиболее простые и доступные идеи сборки самодельного ветряка. Как вы видите, некоторые модели устройств сможет легко изготовить даже ребенок. Существует множество других вариантов самоделок: на мощных магнитах, со сложными лопастями и т.д. Эти конструкции стоит повторять только при наличии некоторого опыта в этом деле, начинать следует с простых схем. Если вы хотите сделать ветрогенератор, чтобы он работал и использовался по назначению, действуйте согласно предоставленной нами инструкции. Если у вас остались вопросы – оставляйте их в комментариях.