Технология производства аммиачной селитры. Какие бывают удобрения

Основной метод

В промышленном производстве используется безводный аммиак и концентрированная азотная кислота:

Реакция протекает бурно с выделением большого количества тепла. Проведение такого процесса в кустарных условиях крайне опасно (хотя в условиях большого разбавления водой нитрат аммония может быть легко получен). После образования раствора, обычно с концентрацией 83 %, лишняя вода выпаривается до состояния расплава, в котором содержание нитрата аммония составляет 95--99,5 % в зависимости от сорта готового продукта. Для использования в качестве удобрения расплав гранулируется в распылительных аппаратах, сушится, охлаждается и покрывается составами для предотвращения слёживания. Цвет гранул варьируется от белого до бесцветного. Нитрат аммония для применения в химии обычно обезвоживается, так как он очень гигроскопичен и процентное количество воды в нём (щ(H2O)) получить практически невозможно.

Метод Габера

при давлении, высокой температуре и катализаторе

По способу Габера из азота и водорода синтезируется аммиак, часть которого окисляется до азотной кислоты и реагирует с аммиаком, в результате чего образуется нитрат аммония:

Нитрофосфатный метод

Этот способ также известен как способ Одда, названный так в честь норвежского города, в котором был разработан этот процесс. Он применяется непосредственно для получения азотных и азотно-фосфорных удобрений из широко доступного природного сырья. При этом протекают следующие процессы:

  • 1. Природный фосфат кальция (апатит) растворяют в азотной кислоте:
  • 2. Полученную смесь охлаждают до 0 °C, при этом нитрат кальция кристаллизуется в виде тетрагидрата -- Ca(NO3)2·4H2O, и его отделяют от фосфорной кислоты.

На полученный нитрат кальция и неудалённую фосфорную кислоту действуют аммиаком, и в итоге получают нитрат аммония:

Для получения практически неслеживающейся аммиачной селитры применяют ряд технологических приемов. Эффективным средством уменьшения скорости поглощения влаги гигроскопичными солями является их гранулирование. Суммарная поверхность однородных гранул меньше поверхности такого же количества мелкокристаллической соли, поэтому гранулированные удобрения медленнее поглощают влагу из воздуха. Иногда аммиачную селитру сплавляют с менее гигроскопичными солями, например с сульфатом аммония.

Технологический процесс производства нитрата аммония состоит из следующих основных стадий: нейтрализации азотной кислоты газообразным аммиаком, выпаривание нитрата аммония, кристаллизации и гранулирования плава, охлаждения, классификации и опудривания готового продукта (рис.4.1.).

Рисунок 4.1 Принципиальная схема производства нитрата аммония

В настоящее время в связи с освоением производства 18 - 60% азотной кислоты основная масса нитрата аммония производится на установках АС-67, АС-72, АС-72М, мощностью 1360 и 1171 т/сутки с упариванием в одну ступень (рис.4.2.) , а также на установках безупарочного метода (рис.4.4.).


Рисунок 4.2 Технологическая схема производства АС-72М: 1 - подогреватель аммиака; 2 - подогреватель кислоты; 3 - аппарат ИТН; 4 - донейтрализатор; 1 - выпарной аппарат; 6 - гидрозатвор-донейтрализатор; 7 - сборник плава; 8 - напорный бак; 9 - виброакустический гранулятор; 10 - грануляционная башня; 11 - транспортер; 12 - охладитель гранул «КС»; 13 - подогреватель воздуха; 14 - промывной скруббер

Газообразный аммиак из подогревателя 1, обогреваемого конденсатом сокового пара, нагретый до 120 - 160єС, и азотная кислота из подогревателя 2, обогреваемого соковым паром, при температуре 80 - 90єС поступают в аппарат ИТН (с использованием теплоты нейтрализации) 3. Для уменьшения потерь аммиака вместе с паром реакцию ведут в избытке кислоты. Раствор нитрата аммония из аппарата ИТН нейтрализуют в донейтрализаторе 4 аммиаком, куда одновременно добавляется кондиционирующая добавка нитрата магния и поступает на упаривание в выпарной аппарат 1. Из него образовавшийся плав нитрата аммония через гидрозатвор-донейтрализатор 6 и сборник плава 7 направляется в напорный бак 8 и из него с помощью виброакустических грануляторов 9 поступает в грануляционную башню 10. В нижнюю часть башни засасывается атмосферный воздух, и подается воздух из аппарата для охлаждения гранул «КС» 12. Образовавшиеся гранулы нитрата аммония из нижней части башни поступают на транспортер 11 и в аппарат кипящего слоя 12 для охлаждения гранул, в который через подогреватель 13 подается сухой воздух. Из аппарата 12 готовый продукт направляется на упаковку. Воздух из верхней части башни 10 поступает в скрубберы 14, орошаемые 20% раствором нитрата аммония, где отмывается от пыли нитрата аммония и выбрасывается в атмосферу. В этих же скрубберах очищаются от непрореагировавшего аммиака и азотной кислоты газы, выходящие из выпарного аппарата и нейтрализатора. Аппарат ИТН, грануляционная башня и комбинированный выпарной аппарат -основные аппараты в технологической схеме АС-72М.

Аппарат ИТН (рис.4.3.) имеет общую высоту 10 м и состоит из двух частей: нижней реакционной и верхней сепарационной. В реакционной части находится перфорированный стакан в который подают азотную кислоту и аммиак. При этом за счет хорошей теплоотдачи реакционной массы стенкам стакана, реакция нейтрализации протекает при температуре, более низкой, чем температура кипения кислоты. Образующийся раствор нитрата аммония закипает, и из него испаряется вода. За счет подъемной силы пара парожидкостная эмульсия выбрасывается из верхней части стакана и проходит через кольцевой зазор между корпусом и стаканом, продолжая упариваться. Затем она поступает в верхнюю сепарационную часть, где раствор, проходя ряд тарелок, отмывается от аммиака раствором нитрата аммония и конденсатом сокового пара. Время пребывания реагентов в реакционной зоне не превышает одной секунды, благодаря чему не происходит термического разложения кислоты и нитрата аммония. За счет использования теплоты нейтрализации в аппарате испаряется большая часть воды и образуется 90% раствор нитрата аммония.

Комбинированный выпарной аппарат высотой 16 м состоит из двух частей. В нижней кожухотрубной части диаметром 3м происходит упаривание раствора, проходящего через трубки, обогреваемые сначала перегретым паром, нагретым до 180єС воздухом. Верхняя часть аппарата служит для очистки выходящей из аппарата паровоздушной смеси и частичного упаривания поступающего в аппарат раствора нитрата аммония. Из выпарного аппарата выходит плав нитрата аммония концентрацией 99,7% с температурой около 180єС.

Грануляционная башня имеет прямоугольное сечение 11х8 м2 и высоту около 61 м. Через отверстие в нижней части в башню поступает наружный воздух и воздух из охладителя гранул. Поступающий в верхнюю часть башни плав нитрата аммония диспергируется с помощью трех виброакустических грануляторов, в которых струя плава превращается в капли. При падении капель с высоты около 10 м они затвердевают и превращаются в гранулы. Кристаллизация плава с влажностью 0,2% начинается при 167єС и заканчивается при 140 єС. Объем воздуха, подаваемого в башне, составляет в зависимости от времени года 300 - 100 м3/час. В установках АС - 72М применяется магнезиальная добавка против слеживаемости продукта (нитрат магния). Поэтому операции обработки гранул ПАВ, предусмотренной в схемах АС - 67 и АС - 72, не требуется. Принципиальными отличиями технологической схемы производства нитрата аммония безупарочным методом (рис.4.) являются: использование более концентрированной азотной кислоты; проведение процесса нейтрализации при повышенном (0,4МПа) давлении; быстрый контакт нагретых компонентов. В этих условиях на стадии нейтрализации образуется парожидкостная эмульсия, после разделения которой получают плав концентрацией 98,1%, что позволяет исключить отдельную стадию упаривания раствора.


Рисунок 4.4 Технологическая схема безупарочного метода: 1 - подогреватель азотной кислоты; 2 - подогреватель аммиака; 3 - реактор (нейтрализатор); 4 - сепаратор эмульсии; 1 - барабанный кристаллизатор; 6 - нож; 7 - барабанная сушка

Нагретые в нагревателях 1 и 2, обогреваемые паром, выходящим из сепаратора, эмульсии 4, азотная кислота и аммиак поступают в нейтрализатор 3, где в результате реакции образуется эмульсия из водного раствора нитрата аммония и водяного пара. Эмульсия разделяется в сепараторе 4 и плав нитрата аммония подается в барабанный кристаллизатор 1, в котором нитрат аммония кристаллизируется на поверхности металлического барабана, охлаждаемого изнутри водой.

Образовавшийся на поверхности барабана слой твердого нитрата аммония толщиной около 1 мм срезается ножом 6 и в виде чешуек поступает для просушивания в барабанную сушилку 7. Подобный продукт в виде чешуек используется для технических целей.

Охлажденный продукт направляют на склад, а затем на отгрузку навалом или на упаковку в мешки. Обработку диспергатором ведут в полом аппарате с центральнорасположенной форсункой, опрыскивающей кольцевой вертикальный поток гранул, или во вращающемся барабане. Качество обработки гранулированного продукта во всех применяемых аппаратах удовлетворяет требование ГОСТ 2-85.

Гранулированную аммиачную селитру хранят на складе в буртах высотой до 11 м. Перед отправкой потребителю селитру из склада подают на рассев. Нестандартный продукт растворяют, раствор возвращают на упарку. Стандартный продукт обрабатывают диспергатором НФ и отгружают потребителям.

Емкости для серной и фосфорной кислот и насосное оборудование для их дозирования скомпоновано в самостоятельный блок. Центральный пункт управления, электроподстанция, лаборатория, служебные и бытовые помещения расположены в отдельном здании.

Упаковка селитры производится в мешки с полиэтиленовым вкладышем массой 50 кг, также специализированные контейнеры - бигбеги, массой 500-800 кг. Транспортировка осуществляется как в подготовленной таре, так и насыпью. Возможно перемещение различными разновидностями транспорта, только исключен воздушный транспорт из-за повышенной пожарной опасностью.

Технологический процесс производства аммиачной селитры включает кроме стадии нейтрализации азотной кислоты аммиаком также стадии упаривания раствора селитры, гранулирования плава, охлаждения гранул, обработки гранул поверхностно-активными веществами, упаковки, хранения и погрузки селитры, очистки газовых выбросов и сточных вод.

Исходная 58--60%-ная азотная кислота подогревается в подогревателе / до 70--80 С соковым паром из аппарата ИТН 3 и подается на нейтрализацию. Перед аппаратами 3 к азотной кислоте добавляют фосфорную и серную кислоты в таких количествах, чтобы в готовом продукте содержалась 0,3--0,5% Р2О5 и 0,05--0,2% сульфата аммония.

В агрегате установлены два аппарата ИТН, работающие параллельно. Кроме азотной кислоты в них подают газообразный аммиак, предварительно нагретый в подогревателе 2 паровым конденсатом до 120-- 130 °С. Количества подаваемых азотной кислоты и аммиака регулируют таким образом, чтобы на выходе из аппарата ИТН раствор имел небольшой избыток кислоты (2--5 г/л), обеспечивающий полноту поглощения аммиака.

Азотную кислоту (58--60%-ную) подогревают в аппарате 2 до 80--90 °С соковым паром из аппарата ИТН 8. Газообразный аммиак в подогревателе 1 нагревается паровым конденсатом до 120--160°С. Азотная кислота и газообразный аммиак в автоматически регулируемом соотношении поступают в реакционные части двух аппаратов ИТН 5, работающих параллельно. Выходящий из аппаратов ИТН 89--92%-ный раствор NH4NO3 при 155--170 °С имеет избыток азотной кислоты в пределах 2--5 г/л, обеспечивающий полноту поглощения аммиака.

В верхней части аппарата соковый пар из реакционной части отмывается от брызг аммиачной селитры; паров HNO3 и NНз 20%-ным раствором аммиачной селитры из промывного скруббера 18 и конденсатом сокового пара из подогревателя азотной кислоты 2, которые подают на колпачковые тарелки верхней части аппарата. Часть сокового пара используют на подогрев азотной кислоты в подогревателе 2, а основную его массу направляют в промывной скруббер 18, где смешивают с воздухом из грануляционной башни, с паровоздушной смесью из выпарного аппарата 6 и промывают на промывных тарелках скруббера. Промытую паровоздушную смесь выбрасывают в атмосферу вентилятором 19.

Раствор из аппаратов ИТН 8 последовательно проходит донейтрализатор 4 и контрольный донейтрализатор 5. В донейтрализатор 4 дозируют серную и фосфорную кислоты в количестве, обеспечивающем содержание в готовом продукте 0,05--0,2% сульфата аммония и 0,3--0,5% P20s. Дозировку кислот плунжерными насосами регулируют в зависимости от нагрузки агрегата.

После нейтрализации избыточной НМОз в растворе аммиачной селитры из аппаратов ИТН и введенных серной и фосфорной кислот в донейтрализаторе 4, раствор проходит контрольный донейтрализатор 5 (куда аммиак автоматически подается только в случае проскока кислоты донейтрализатора 4) и поступает в выпарной аппарат6. В отличие от агрегата АС-67 верхняя часть выпарного аппарата 6 снабжена двумя ситчатыми промывными тарелками, на которые подают паровой конденсат, отмывающий паровоздушную смесь из выпарного аппарата от аммиачной селитры

Плав селитры из выпарного аппарата 6, пройдя гидрозатвордонейтрализатор 9 и фильтр 10, поступает в бак 11, откуда его погружным насосом 12 по трубопроводу с антидетонационной насадкой подают в напорный бак 15, а затем к грануляторам 16 или 17. Безопасность узла перекачивания плава обеспечивается системой автоматического поддержания температуры плава при его упаривании в выпарном аппарате (не выше 190 °С), контролем и регулированием среды плава после донейтрализатора 9 (в пределах 0,1-- 0,5 г/л NНз), контролем температуры плава в баке 11, корпусе насоса 12 и напорном трубопроводе. При отклонении регламентных параметров процесса перекачивание плава автоматически прекращается, а плав в баках 11 и выпарном аппарате 6 при повышении температуры разбавляют конденсатом.

Предусмотрено гранулирование двумя типами грануляторов: виброакустическими 16 и монодисперсными 17. Более надежными и удобными в работе оказались вибр о акустические грануляторы, которые и эксплуатируются на крупнотоннажных агрегатах.

Плав гранулируют в прямоугольной металлической башне 20 с размерами в плане 8х11 м. Высота полета гранул 55 м обеспечивает кристаллизацию и остывание гранул диаметром 2--3 мм до 90--120°С при встречном потоке воздуха летом до 500 тыс. м?ч и зимой (при низких температурах) до 300--400 тыс. м?ч. В нижней части башни расположены приемные конуса, с которых гранулы ленточным конвейером 21 направляют в аппарат охлаждения КС 22.

Аппарат охлаждения 22 разделен на три секции с автономной подачей воздуха под каждую секцию решетки кипящего слоя. В головной его части имеется встроенный грохот, на котором отсеиваются комки селитры, образовавшиеся вследствие нарушения режима работы грануляторов. Комки направляют на растворение. Воздух, подаваемый в секции аппарата охлаждения вентиляторами 23, подогревают в аппарате 24 за счет тепла сокового пара из аппаратов ИТН. Подогрев производят при влажности атмосферного воздуха выше 60%, а в зимнее время во избежание резкого охлаждения гранул. Гранулы аммиачной селитры последовательно проходят одну, две или три секции аппарата охлаждения в зависимости от нагрузки агрегата и температуры атмосферного воздуха. Рекомендуемая температура охлаждения гранулированного продукта в зимнее время--ниже 27 °С, летом--до 40--50 °С. При эксплуатации агрегатов в южных районах, где значительное число дней температура воздуха превышает 30 °С, третья секция аппарата охлаждения работает на предварительно охлажденном воздухе (в испарительном аммиачном теплообменнике). Количество воздуха, подаваемое в каждую секцию, 75--80тыc.м з /ч. Напор вентиляторов 3,6 кПа. Отработанный воздух из секций аппарата при температуре 45--60°С, содержащий до 0,52 г/м 3 пыли аммиачной селитры, направляют в грануляционную башню, где он смешивается с атмосферным воздухом и поступает на промывку в промывной скруббер 18.

Охлажденный продукт направляют на склад или на обработку ПАВ (диспергатором НФ), а затем на отгрузку навалом или на упаковку в мешки. Обработку диспергатором НФ ведут в полом аппарате 27 с центральнорасположенной форсункой, опрыскивающей кольцевой вертикальный поток гранул, или во вращающемся барабане. Качество обработки гранулированного продукта во всех применяемых аппаратах удовлетворяет требование ГОСТ 2---85.

Гранулированную аммиачную селитру хранят на складе в буртах высотой до 11 м. Перед отправкой потребителю селитру из склада подают на рассев. Нестандартный продукт растворяют, раствор возвращаютнаупарку. Стандартный продукт обрабатывают диспергатором НФ и отгружают потребителям.

Емкости для серной и фосфорной кислот и насосное оборудование для их дозирования скомпоновано в самостоятельный блок. Центральный пункт управления, электроподстанция, лаборатория, служебные и бытовые помещения расположены в отдельном здании.

Аммиачная селитра - одно из наиболее распространенных удобрений.

Аммиачную селитру (иначе - азотнокислый аммоний) получают на заводах из азотной кислоты и аммиака путем химического взаимодействия этих соединений.

Процесс производства состоит из следующих стадий:

  1. Нейтрализация азотной кислоты газообразным аммиаком.
  2. Упаривание раствора азотнокислого аммония.
  3. Кристаллизация азотнокислого аммония.
  4. Сушка соли.

На рисунке дана в упрощенном виде технологическая схема производства аммиачной селитры. Как же протекает этот процесс?

Исходное сырье - газообразный аммиак и азотная кислота (водный раствор) - поступает в нейтрализатор. Здесь в результате химического взаимодействия обоих веществ происходит бурная реакция с выделением большого количества тепла. При этом часть воды испаряется, и образующийся водяной пар (так называемый соковый пар) через ловушку отводится наружу.

Неполностью упаренный раствор азотнокислого аммония поступает из нейтрализатора в следующий аппарат - донейтрализатор. В нем после добавки водного раствора аммиака заканчивается процесс нейтрализации азотной кислоты.

Из донейтрализатора раствор азотнокислого аммония перекачивается в выпарной аппарат - непрерывно действующий вакуум-аппарат. Раствор в таких аппаратах выпаривается при пониженном давлении, в данном случае - при давлении 160-200 мм рт. ст. Тепло для упаривания передается раствору через стенки трубок, обогреваемых паром.

Упаривание ведется до тех пор, пока концентрация раствора не достигнет 98%. После этого раствор идет на кристаллизацию.

По одному способу кристаллизация азотнокислого аммония происходит на поверхности барабана, который изнутри охлаждается. Барабан вращается, на поверхности его образуется корка кристаллизующегося азотнокислого аммония толщиной до 2 мм. Корка срезается ножом и по желобу направляется на сушку.

Сушат аммиачную селитру горячим воздухом во вращающихся сушильных барабанах при температуре 120°. После сушки готовый продукт отправляют на упаковку. Аммиачная селитра содержит 34-35% азота. Чтобы уменьшить слеживаемость, в ее состав при производстве вводят различные добавки.

Аммиачная селитра выпускается заводами в гранулированном виде и в виде чешуек. Чешуйчатая селитра сильно поглощает влагу из воздуха, поэтому при хранении она расплывается и теряет рассыпчатость. Гранулированная аммиачная селитра имеет вид зерен (гранул).

Гранулирование аммиачной селитры большей частью производится в башнях (см. рисунок). Упаренный раствор азотнокислого аммония - плав - разбрызгивается при помощи центрифуги, укрепленной в потолке башни.

Плав непрерывной струей вливается во вращающийся дырчатый барабан центрифуги. Проходя через отверстия барабана, брызги превращаются в шарики соответствующего диаметра и во время падения вниз затвердевают.

Гранулированная аммиачная селитра обладает хорошими физическими свойствами, не слеживается при хранении, хорошо рассеивается в поле и медленно поглощает влагу из воздуха.

Сульфат аммония — (иначе - сернокислый аммоний) содержит 21 % азота. Большую часть сульфата аммония выпускает коксохимическая промышленность.

В предстоящие годы большое развитие получит производство наиболее концентрированного азотного удобрения - карбамида, или мочевины, которая содержит 46% азота.

Мочевину получают под высоким давлением синтезом из аммиака и углекислоты. Ее применяют не только как удобрение, но и для подкормки скота (дополняют белковое питание) и как полупродукт для производства пластмасс.

Большое значение имеют и жидкие азотные удобрения - жидкий аммиак, аммиакаты и аммиачная вода.

Жидкий аммиак получают из газообразного аммиака путем сжижения под высоким давлением. В нем содержится 82% азота. Аммиакаты представляют собой растворы аммиачной селитры, кальциевой селитры или мочевины в жидком аммиаке с небольшой добавкой воды. В них содержится до 37% азота. Аммиачная вода - водный раствор аммиака. В ней 20% азота. По своему действию на урожай жидкие азотные удобрения не уступают твердым. А производство их обходится намного дешевле, чем твердых, так как отпадают операции по упариванию раствора, сушке и гранулированию. Из трех видов жидкого азотного удобрения наибольшее распространение получила аммиачная вода. Разумеется, внесение жидких удобрений в почву, а также их хранение и транспортировка требуют специальных машин и оборудования.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter .

Аммиачная селитра -- один из основных видов азотных удобрений; содержит не менее 34,2% азота. Сырьем для получения гранулированной аммиачной селитры служат неконцентрированная 30--40% азотная кислота и газообразный аммиак.

В качестве кондиционирующей добавки иногда используют 92,5% серную кислоту, которая нейтрализуется аммиаком вместе с азотной кислотой до сульфата аммония. Для опрыскивания готовых гранул применяют поверхностно-активное вещество -- 40% водный раствор диспергатора «НФ».

Основными стадиями производства аммиачной селитры являются: нейтрализация азотной кислоты газообразным аммиаком; получение высококонцентрированного плава аммиачной селитры; гранулирование плава; охлаждение гранул аммиачной селитры; обработка гранул поверхностно-активным веществом -- диспергатором «НФ»; очистка воздуха и сокового пара перед выбросом в атмосферу; упаковка и хранение готового продукта.

Технологическая схема производства

Аммиачная селитра - одно из наиболее распространенных азотных удобрений. Получают ее нейтрализацией разбавленной азотной кислоты (40--50%) газообразным аммиаком.


Азотная кислота из приемной емкости 1 (рис.9.8) проходит через теплообменник 2 и поступает в нейтрализатор 3. Туда же подается предварительно нагретый в теплообменнике 5 газообразный аммиак. Основное количество аммиака поступает в газообразном состоянии из цеха синтеза аммиака. Дополнительно со склада подается жидкий аммиак, который испаряется в аппарате 4.

В нейтрализаторе 3 при атмосферном давлении и определенной температуре протекает процесс нейтрализации

параллельно с ним происходит частичное упаривание раствора за счет теплоты нейтрализации. Частично упаренный слабокислый раствор аммиачной селитры концентрацией 60--80% (так называемый слабый щелок) поступает в бак с мешалкой -- донейтралнзатор 6, где окончательно нейтрализуется аммиаком. Пар, образующийся при выпаривании раствора (соковый пар), выводится из верхней части нейтрализатора. При неправильном ведении процесса из нейтрализатора с соковым паром может уноситься часть аммиака и азотной кислоты.

Упаривание слабого щелока до 98,5% NH4NO3 осуществляется под вакуумом в две ступени. Первоначально в выпарном аппарате 8 концентрация щелока доводится до 82% NH4NO3, а затем и в выпарном аппарате 12 -- до заданной.

Слабый щелок подается в нижнюю часть выпарного аппарата 8. В качестве греющего агента в выпарном аппарате I ступени в основном используют соковый пар. Дополнительно к нему подают водяной пар. По мере увеличения концентрации сокового пара в греющей камере выпарного аппарата накапливаются инертные газы, ухудшающие теплопередачу. Для обеспечения нормальной работы аппарата 8 предусмотрена продувка межтрубного пространства с выбросом инертных газов в атмосферу.

Упаренный щелок из аппарата 8 перемещается в сборник 10. Здесь для улучшения качества получаемой селитры к щелоку добавляют раствор доломита, снижающего слеживаемость селитры.

Из сборника 10 щелок перекачивается в выпарной аппарат 12. В сепараторе 13 производится разделение выпаренного раствора на соковый пар и концентрированный раствор - плав. Соковый пар проходит в барометрический конденсатор 14, а плав подается в грануляционную башню 15. Гранулированная аммиачная селитра (конечный продукт) выводится из башни по выходному патрубку 16 транспортером 17.

Аммиачная селитра, или нитрат аммония, NH 4 NO 3 - кристаллическое вещество белого цвета, содержащее 35% азота в аммонийной и нитратной формах, обе формы азота легко усваиваются растениями. Гранулированную аммиачную селитру применяют в больших масштабах перед посевом и для всех видов подкормок. В меньших масштабах ее используют для производства взрывчатых веществ.

Аммиачная селитра хорошо растворяется в воде и обладает большой гигроскопичностью (способностью поглощать влагу из воздуха), что является причиной того, что гранулы удобрения расплываются, теряют свою кристаллическую форму, происходит слеживание удобрений - сыпучий материал превращается в твердую монолитную массу.

Принципиальная схема производства нитрата аммония

Для получения практически неслеживающейся аммиачной селитры применяют ряд технологических приемов. Эффективным средством уменьшения скорости поглощения влаги гигроскопичными солями является их гранулирование. Суммарная поверхность однородных гранул меньше поверхности такого же количества мелкокристаллической соли, поэтому гранулированные удобрения медленнее поглощают влагу из

В качестве аналогично действующих добавок применяют также фосфаты аммония, хлорид калия, нитрат магния. В основе процесса производства аммиачной селитры лежит гетерогенная реакция взаимодействия газообразного аммиака с раствором азотной кислоты:

NH 3 +HNO 3 = NH 4 NO 3 ; ΔН = -144.9кДж

Химическая реакция протекает с большой скоростью; в промышленном реакторе она лимитируется растворением газа в жидкости. Для уменьшения диффузионного торможения большое значение имеет перемешивание реагентов.

Технологический процесс производства аммиачной селитры включает кроме стадии нейтрализации азотной кислоты аммиаком также стадии упаривания раствора селитры, гранулирования плава, охлаждения гранул, обработки гранул поверхностно-активными веществами, упаковки, хранения и погрузки селитры, очистки газовых выбросов и сточных вод. На рис. 8.8 приведена схема современного крупнотоннажного агрегата по производству аммиачной селитры АС-72 мощностью 1360 т/сут. Исходная 58-60%-ная азотная кислота подогревается в подогревателе до 70 - 80°С соковым паром из аппарата ИТН 3 и подается на нейтрализацию. Перед аппаратами 3 к азотной кислоте добавляют фосфорную и серную кислоты в таких количествах, чтобы в готовом продукте содержалась 0,3-0,5% Р 2 О 5 и 0,05-0,2% суль- фата аммония. В агрегате установлены два аппарата ИТН, работающие параллельно. Кроме азотной кислоты в них подают газообразный аммиак, предварительно нагретый в подогревателе 2 паровым конденсатом до 120- 130°С. Количества подаваемых азотной кислоты и аммиака регули- руют таким образом, чтобы на выходе из аппарата ИТН раствор имел небольшой избыток кислоты (2-5 г/л), обеспечивающий полноту поглощения аммиака.



В нижней части аппарата происходит реакция нейтрализации при температуре 155-170°С; при этом получается концентрированный раствор, содержащий 91-92% NH 4 NO 3 . В верхней части аппарата водяные пары (так называемый соковый пар) отмываются от брызг аммиачной селитры и паров азотной кислоты. Часть теплоты сокового пара используется на подогрев азотной кислоты. Затем соковый пар направляют на очистку и выбрасывают в атмосферу.

Рис.8.8.Схема агрегата аммиачной селитры АС-72:

1 – подогреватель кислоты; 2 – подогреватель аммиака; 3 –аппараты ИТН; 4 – донейтрализатор; 5 –выпарной аппарат; 6 – напорный бак; 7,8 – грануляторы; 9,23 – вентиляторы; 10 – промывной скруббер; 11 – барабан; 12,14 – транспортеры; 13 –элеватор; 15 – аппарат кипящего слоя; 16 –грануляционная башня; 17 – сборник; 18, 20 – насосы; 19 – бак для плава; 21 –фильтр для плава; 22 – подогреватель воздуха.

Кислый раствор аммиачной селитры направляют в донейтрализатор 4; куда поступает аммиак, необходимый для взаимодействия с оставшейся азотной кислотой. Затем раствор подают в выпарной аппарат 5. Полученный плав, содержащий 99,7-99,8% селитры, при 175°С проходит фильтр 21 и центробежным погружным насосом 20 подается в напорный бак 6, а затем в прямоугольную металлическую грануляционную башню 16.

В верхней части башни расположены грануляторы 7 и 8, в нижнюю часть которых подают воздух, охлаждающий падающие сверху капли селитры. Во время падения капель селитры с высоты 50-55 м при обтекании их потоком воздуха образуются гранулы удобрения. Температура гранул на выходе из башни равна 90-110°С; горячие гранулы охлаждают в аппарате кипящего слоя 15. Это прямоугольный аппарат, имеющий три секции и снабженный решеткой с отверстиями. Под решетку вентиляторами подают воздух; при этом создается псевдоожиженный слой гранул селитры, поступающих по транспортеру из грануляционной башни. Воздух после охлаждения попадает в грануляционную башню. Гранулы аммиачной селитры транспортером 14 подают на обработку поверхностно-активными веществами во вращающийся барабан. Затем готовое удобрение транспортером 12 направляют на упаковку.



Воздух, выходящий из грануляционной башни, загрязнен частицами аммиачной селитры, а соковый пар из нейтрализатора и паровоздушная смесь из выпарного аппарата содержат непрореагировавший аммиак и азотную кислоту, а также частицы унесенной аммиачной селитры.

Для очистки этих потоков в верхней части грануляционной башни расположены шесть параллельно работающих промывных скрубберов тарельчатого типа 10, орошаемых 20-30%-ным раствором аммиачной селитры, которая подается насосом 18 из сборника 17. Часть этого раствора отводится в нейтрализатор ИТН для промывки сокового пара, а затем подмешивается к раствору селитры, и, следовательно, используется для выработкой продукции. Очищенный воздух отсасывается из грануляционной башни вентилятором 9 и выбрасывается в атмосферу.

Производство карбамида

Карбамид (мочевина) среди азотных удобрений занимает второе место по объему производства после аммиачной селитры. Рост производства карбамида обусловлен широкой сферой его применения в сельском хозяйстве. Он обладает большей устойчивостью к выщелачиванию по сравнению с другими азотными удобрениями, т. е. менее подвержен вымыванию из почвы, менее гигроскопичен, может применяться не только как удобрение, но и в качестве добавки к корму крупного рогатого скота. Карбамид, кроме того, широко используется для получения сложных удобрений, удобрений с регулируемым сроком действия, а также для получения пластмасс, клеев, лаков и покрытий. Карбамид CO(NH 2) 2 - белое кристаллическое вещество, содержащее 46,6% азота. Его получение основано на реакции взаимодействия аммиака с диоксидом углерода:

2NH 3 + CO 2 ↔ CO(NH 2) 2 + H 2 O; ΔН = -110.1 кДж (1)

Таким образом, сырьем для производства карбамида служат аммиак и диоксид углерода, получаемый в качестве побочного продукта при производстве технологического газа для синтеза аммиака. Поэтому производство карбамида на химических заводах обычно комбинируют с производством аммиака. Реакция (I) - суммарная; она протекает в две стадии. На первой стадии происходит синтез карбамата:

2NH 3 (г) + CO2(г) ↔ NH 2 СООNH 4 (ж); ΔН = –125,6кДж (2)

На второй стадии протекает эндотермический процесс отщепления воды от молекул карбамата, в результате которого и происходит образование карбамида:

NH 2 СООNH 4 (ж) ↔ CO(NH 2) 2 (ж) + H2O (ж) ; ΔН =15,5кДж (3) Реакция образования карбамата аммония - обратимая экзотермическая реакция, протекающая с уменьшением объема. Для смещения равновесия в сторону продукта ее необходимо проводить при повышенном давлении. Для того чтобы процесс протекал с достаточно высокой скоростью, необходимы повышенные температуры. Повышение давления компенсирует отрицательное влияние высоких температур на смещение равновесия реакции в обратную сторону. На практике синтез карбамида проводят при температурах 150-190°С и давлении 15-20 МПа. В этих условиях реакция протекает с высокой скоростью и практически до конца. Разложение карбамата аммония - обратимая эндотермическая реакция, интенсивно протекающая в жидкой фазе. Чтобы в реакторе не происходило кристаллизации твердых продуктов, процесс необходимо вести при температурах не ниже 98°С [эвтектическая точка для системы CO(NH 2) 2 - NH 2 COONH 4 ]. Более высокие температуры смещают равновесие реакции вправо и повышают ее скорость. Максимальная степень превращения карбамата в карбамид достигается при 220°С. Для смещения равновесия этой реакции вводят также избыток аммиака, который, связывая реакционную воду, удаляет ее из сферы реакции. Однако добиться полного превращения карбамата в карбамид все же не удается. Реакционная смесь помимо продуктов реакции (карбамида и воды) содержит также карбамат аммония и продукты его разложения - аммиак и СО 2 .

Для полного использования исходного сырья необходимо либо предусмотреть возвращение непрореагировавших аммиака и диоксида углерода, а также углеаммонийных солей (промежуточных продуктов реакции) в колонну синтеза, т. е. создание рецикла, либо отделение карбамида от реакционной смеси и направление оставшихся реагентов на другие производства, например на производство аммиачной селитры, т.е. проведение процесса по открытой схеме.

В последнем случае плав, выходящий из колонны синтеза, дросселируют до атмосферного давления; равновесие реакции (2) при температурах 140-150°С практически полностью смещается влево и весь оставшийся карбамат разлагается. В жидкой фазе остается водный раствор карбамида, который упаривают и направляют на грануляцию. Рецикл образовавшихся газообразных аммиака и диоксида углерода в колонну синтеза потребовал бы их сжатия в компрессоре до давления синтеза карбамида. Это сопряжено с техническими трудностями, связанными с возможностью образования карбамата при низких температурах и высоком давлении уже в компрессоре и забивки машин и тру- бопроводов твердыми частицами.

Поэтому в закрытых схемах (схемах с рециркуляцией) обычно применяют только жидкостной рецикл. Существует ряд технологических схем с жидкостным рециклом. К числу наиболее прогрессивных принадлежат так называемые схемы с полным жидкостным рециклом и с применением стриппинг-процесса. Стриппинг (отдувка) заключается в том, что разложение карбамата аммония в плаве после колонны синтеза ведут при давлении, близком к давлению на стадии синтеза, продувкой плава сжатым СО 2 или сжатым аммиаком. В этих условиях диссоциация карбамата аммония происходит за счет того, что при продувке плава диоксидом углерода резко снижается парциальное давление аммиака и происходит смещение равновесия реакции (2) влево. Такой процесс отличается использованием теплоты реакции образования карбамата и более низким расходом энергии.

На рис.8.9. приведена упрощенная схема крупнотоннажного агрегата синтеза карбамида с жидкостным рециклом и применением стриппинг-процесса. В ней можно выделить узел высокого давления, узел низкого давления и систему грануляции. Водный раствор карбамата аммония и углеаммонийных солей, а также аммиак и диоксид углерода поступают в нижнюю часть колонны синтеза 1 из конденсатора высокого давления 4. В колонне синтеза при температуре 170-190°С и давлении 13-15 МПа заканчивается образование карбамата и протекает реакция синтеза карбамида. Расход реагентов подбирают таким образом, чтобы в реакторе молярное отношение NH 3: СО 2 составляло 2,8-2,9. Жидкая реакционная смесь (плав) из колонны синтеза карбамида поступает в отдувочную колонну 5, где стекает по трубкам вниз. Противотоком к плаву подают сжатый в компрессоре до давления 13- 15 МПа диоксид углерода, к которому для образования пассивирующей пленки и уменьшения коррозии оборудования добавлен воздух в количестве, обеспечивающем в смеси концентрацию кислорода 0,5-0,8%. Отдувочная колонна обогревается водяным паром. Парогазовая смесь из колонны 5, содержащая свежий диоксид углерода, поступает в конденсатор высокого давления 4. В него же вводят жидкий аммиак. Он одновременно служит рабочим потоком в инжекторе 3, подающем в конденсатор раствор углеаммонийных солей из скруббера 2 и при необходимости часть

Рис.8.9. Упрощенная технологическая схема получения карбамида с полным жидкостным рециклом и применением процесса стриппинга:

1 – колонна синтеза карбамида; 2 – скруббер высокого давления; 3 –инжектор; 4 – карбаматный конденсатор высокоого давления; 5 –отдувочная колонна; 6 – насосы; 7 –конденсатор низкого давления; 8 – ректификационная колонна низкого давления; 9 –подогреватель; 10 – сборник; 11 –выпарной аппарат; 12 – грануляционная башня.

плава из колонны синтеза. В конденсаторе образуется карбамат. Выделяющуюся при реакции теплоту используют для получения водяного пара.

Из верхней части колонны синтеза непрерывно выходят непрореагировавшие газы, поступающие в скруббер высокого давления 2, в котором большая часть их конденсируется за счет водного охлаждения, образуя водный раствор карбамата и углеаммонийных солей. Водный раствор карбамида, выходящий из отдувочной колонны 5, содержит 4-5% карбамата. Для окончательного его разложения раствор дросселируют до давления 0,3-0,6 МПа и затем направляют в верхнюю часть ректификационной колонны 8. Жидкая фаза стекает в колонне вниз по насадке противотоком к парогазовой смеси, поднимающейся снизу вверх; из верхней части колонны выходят NH 3 , CO 2 и водяные пары. Водяные пары конденсируются в конденсаторе низкого давления 7, при этом растворяется основная часть аммиака и диоксида углерода. Полученный раствор направляют в скруббер 2. Окончательная очистка газов, выбрасываемых в атмосферу, производится абсорбционными методами (на схеме не показана).

70%-ный водный раствор карбамида, выходящий из нижней части ректификационной колонны 8, отделяют от парогазовой смеси и направляют после снижения давления до атмосферного сначала на выпарку, а затем на грануляцию. Перед распылением плава в грануляционной башне 12 к нему добавляют кондиционирующие добавки, например мочевиноформальдегидную смолу, чтобы получить неслеживающееся удобрение, не портящееся при хранении.

Принципиальная схема с полным рециклом