От чего зависит точность измерения данным прибором. Определение точности измерений. Понятие погрешности измерения. Как объять необъятное

Погрешность измерений При измерении любой величины, как бы тщательно мы ни произ­водили измерение, не представляется возможным получить свобод­ный от искажения результат. Причины этих искажений могут быть различны. Искажения могут быть вызваны несовершенством приме­няемых методов измерения, средств измерений, непостоянством условий измерения и рядом других причин. Искажения, которые получаются при всяком измерении, обусловливают погрешность измерения - отклонение результата измерения от истинного значения измеряемой величины.

Погрешность измерения может быть выражена в единицах изме­ряемой величины, т. е. в виде абсолютной погрешности, которая представляет собой разность между значением, полученным при измерении, и истинным значением измеряемой величины. Погреш­ность измерения может быть выражена также в виде относительной погрешности измерения, представляющей собой отношение к истин­ному значению измеряемой величины. Строго говоря, истинное значение измеряемой величины всегда остается неизвестным, можно найти лишь приближенную оценку погрешности измерения.

Погрешность результата измерения дает представление о том, какие цифры в числовом значении величины, полученном в резуль­тате измерения, являются сомнительными. Округлять числовое значение результата измерения необходимо в соответствии с число­вым разрядом значащей цифры погрешности, т. е. числовоезначение результата измерения должно оканчиваться цифрой того же раз­ряда, что и значение погрешности. При округлении рекомендуется пользоваться правилами приближенных вычислений.

Виды погрешности измерений Погрешности измерения в зависимости от характера причин, вызывающих их появление, принято разделять на случайные, систематические и грубые.

Под случайной погрешностью понимают погрешность измере­ния, изменяющуюся случайным образом при повторных измерениях одной и той же величины. Они вызываются причинами, кото­рые не могут быть определены при измерении и на которые нельзя оказать влияния. Присутствие случайных погрешностей можно обна­ружить лишь при повторении измерений одной и той же величины с одинаковой тщательностью.

Случайные погрешности измерений непостоянны по значению и по знаку. Они не могут быть определены в отдельности и вызывают неточность результата измерения. Однако с помощью теории вероят­ностей и методов статистики случайные погрешности измерений могут быть количественно определены и охарактеризованы в их совокупности, причем тем надежнее, чем больше число проведенных наблюдений.

Под систематической погрешностью понимают погрешность измерения, остающуюся постоянной или закономерно изменяющуюся при повторных измерениях одной и той же величины. Если система­тические погрешности известны, т. е. имеют определенное значение и определенный знак, они могут быть исключены путем внесения поправок.

Обычно различают следующие разновидности систематиче­ских погрешностей: инструментальные, метода измерений, субъек­тивные, установки, методические.

Под инструментальными погрешностями понимают погрешности измерения, зависящие от погрешностей применяемых средств изме­рений.

Под погрешностью метода измерений понимают погрешность, происходящую от несовершенства метода измерений.

Субъективные погрешности (имеющие место при неавтоматиче­ских измерениях) вызываются индивидуальными особенностями наблюдателя, например запаздывание или опережение в регистра­ции момента какого-либо сигнала, неправильная интерполяция при отсчитывании показаний в пределах одного деления шкалы, от параллакса и т. п.

Погрешности установки возникают вследствие неправильной установки стрелки измерительного прибора на начальную отметку шкалы или небрежной установки средства измерений, например не по отвесу или уровню и т. п.

Методические погрешности измерений представляют собой такие погрешности, которые определяются условиями (или методикой) измерения величины (давления, температуры и т. д. данного объекта) и не зависят от точности применяемых средств измерений. Методическая погрешность может быть вызвана, например, добавочным давлением столба жидкости в соединительной линии, если прибор, измеряющий давление, будет установлен ниже или выше места отбора давления. При выполнении измерений, особенно точных, необходимо иметь в виду, что систематические погрешности могут значительно исказить результаты измерения. Поэтому прежде чем приступить к измерению, необходимо выяснить все возможные источники системати­ческих погрешностей и принять меры к их исключению или опреде­лению. При неавтоматических измерениях многое зависит от знаний и опыта экспериментатора.

Для исключения погрешностей установки как при точных, так и при технических измерениях необходима тщательная и пра­вильная установка средств измерений.

При измерении переменной во времени величины результат измерения может оказаться искаженным помимо погрешностей, рассмотренных выше, погрешностью еще одного вида, возникающей только в динамическом режиме и получившей вследствие этого наиме­нование динамической погрешности средства измерений. При изме­рении переменной во времени величины динамическая погрешность может возникнуть вследствие неправильного выбора средства измерений или несоответствия измерительного прибора условиям изме­рения. При выборе средства измерений необходимо знать динамиче­ские свойства его, а также закон изменения измеряемой величины.

Точность измерений В зависимости от назначения и требований, предъявляемых к точности измерений, измерения делятся на точные (лабораторные) и технические. Измерения точные, как пра­вило, выполняются многократно повторяемыми и с помощью средств измерений повышенной точности. Путем повторения измерений влияние на их итог случайных погрешностей можно ослабить, а сле­довательно, повысить точность измерения. При этом необходимо иметь в виду, что даже при благоприятных условиях точность изме­рения не может быть выше точности поверки применяемых средств измерений.

При выполнении технических измерений, широко применяемых в промышленности, а иногда и в лабораторных условиях, используют рабочие средства измерений, которые поправками при их по­верке не снабжаются.

При выполнении точных измерений пользуются средствами измерений повышенной точности, а вместе с тем применяют и более со­вершенные методы измерения. Однако, несмотря на это, вследствие неизбежного наличия во всяком измерении случайных погрешностей истинное значение измеряемой величины остается неизвестным и вместо него мы принимаем некоторое среднее арифметическое зна­чение, относительно которого при большом числе измерений, как показывает теория вероятностей и математическая статистика, у нас есть обоснованная уверенность считать, что оно является наи­лучшим приближением к истинному значению. Под техническими измерениями практически постоянных вели­чин, широко применяемыми в промышленности и в лабораторных условиях, понимаются измерения, выполняемые однократно с по­мощью рабочих (технических или повышенной точности) средств измерений, градуированных в соответствующих единицах. При выполнении прямых технических измерений однократный отсчет показаний по шкале или диаграмме измерительного прибора прини­мается за окончательный результат измерения данной величины. Точность результата прямого измерения при применении измери­тельного показывающего прибора прямого действия может быть оце­нена приближенной максимальной (или предельной) погрешностью,

Погрешностью называется отклонение результата измерения физической величины (например: давления) от истинного значения измеряемой величины. Погрешность возникает в результате несовершенства метода или тех. средств измерения, недостаточного учета влияния внешних условий на процесс измерения, специфической природы самих измеряемых величин и других факторов.

Точность проводимых измерений характеризуется близостью их результатов к истинному значению измеряемых величин. Существует понятие об абсолютной и относительной погрешности измерения.

Абсолютной погрешностью измерения называется разность между результатом измерения и действительным значением измеряемой величины:

DX= Q- X , (6.16)

Абсолютная погрешность выражается в единицах измеряемой величины (кгс/см2 и т. д.)

Относительная погрешность измерения характеризует качество результатов измерения и определяется, как отношение абсолютной погрешности DX к действительному значению величины:

d X=DX/ X , (6.17)

Относительная погрешность обычно выражается в процентах.

В зависимости от причин, приводящих к погрешности измерения, различают систематические и случайные погрешности.

К систематическим погрешностям измерения относятся погрешности, которые при повторных измерениях при одних и тех же условиях проявляются одинаково т. е. Остаются постоянными или их значения меняются по определенному закону. Такие погрешности измерения определяются достаточно точно.

Случайными погрешностями называются погрешности, значения которых измеряется при проведении повторных измерений физической величины, выполненных одинаковым образом.

Оценка погрешности приборов производится в результате их поверки т. е. Совокупности действий (мероприятий) направленных по сравнению показаний приборов с действительным значением измеряемой величины. В качестве действительного значения измеряемой величины при проверке рабочих приборов принимают значение образцовых мер или показаний образцовых приборов. При оценке погрешности образцовых средств измерения за действительное значение измерение величины принимается значение эталонных мер или показания эталонных приборов.

Основная погрешность - погрешность свойственная средству измерения при нормальных условиях (давление атмосферное, Твозд. = 20 град, влажность 50-80 %).

Дополнительная погрешность - это погрешность вызванная измерением одной из влияющих величин за пределы нормальных условий. (например температура, ср. изм.)

Понятие о классах точности. Под классом точности принимается обобщенная характеристика средств измерений, определенная пределами допускаемых основных и дополнительных погрешностей, а также др. свойств этих средств, которые могут влиять на их точность. Класс точности выражается числом, совпадающим со значением допускаемой погрешности.

Образцовый манометр (датчик) класса точности 0,4 имеет допустимую погрешность = 0,4 % от предела измерения т.е. погрешность образцового манометра с пределом измерения 30 Мпа не должна превышать +-0,12 Мпа.

Классы точности приборов измерения давления: 0,16; 0,25; 0,4; 0,6; 1,0; 1,5; 2,5.

Чувствительностью приборов называется отношение перемещения его указателя D n (направление стрелки) к изменению значения измеряемой величины, вызвавшему это перемещение. Таким образом, чем выше точность прибора, тем как правило, и больше чувствительность.

Основные характеристики измерительных приборов определяются в процессе специальных испытаний, включающих в себя градуировку, при которой определяются градуировочная характеристика прибора т.е. зависимость между его показаниями и значениями измеряемой величины. Градуировочную характеристику составляют в виде графиков, формул или таблиц.

Великий русский ученый Дмитрий Иванович Менделеев сказал: «Наука начинается там, где начинаются измерения». В ходе этого урока вы узнаете, что такое измерение, что такое цена деления шкалы измерительного прибора и как ее рассчитать, а также научитесь определять погрешность (неточность) результатов измерений.

Тема: Введение

Урок № 2: Физические величины и их измерение.

Точность и погрешность измерений.

Цель урока: познакомиться с понятием «физические величины»; научиться измерять физические величины при помощи простейших измерительных средств и определять погрешность измерений.

Оборудование: линейка, мензурка, термометр, амперметр, вольтметр.

1. Проверка домашнего задания (15 минут).

1) Первый ученик решает задачу № 5 у доски.

2) Второй ученик решает задачу № 6 у доски.

3) Остальные пишут физический диктант.

4) Как дополнительные вопросы спросить у решающих задачи у доски вопросы к параграфу и основные определения.

6) У 7 «А» как дополнительный вопрос спросить про сообщения на листочке (какие выводы сделали).

2. Изучение нового материала (20 минут).

Вы уже знаете, что для изучения различных физических явлений, происходящих с различными физическими телами, приходится ставить опыты. А во время проведения опытов приходится проводить измерения различных физических величин, таких как масса тела, скорость, время, высота, длина, ширина и др. Для измерения физических величин требуются различные физические приборы.

2.1. Что значит измерить физическую величину?

(ПЗ): Измерить физическую величину – это значит сравнить ее с другой такой же (как говорят, однородной) физической величиной, принятой за единицу.

Например, длину предмета сравнивают с единицей длины, массу тела сравнивают с единицей массы. Но если один исследователь измерит длину, например, пройденного пути в саженях, а другой исследователь измерит ее в футах, то им, наверное, сразу будет трудно понять друг друга.

Поэтому во всем мире стараются измерять физические величины в одних и тех же единицах. В 1963 году была принята Международная система единиц СИ (SI – System International). И именно в этой системе единиц измерения физических величин мы в дальнейшем будем работать.

Например, самыми распространенными физическими величинами являются длина, масса и время. В Международной системе единиц СИ принято:

Длину измерять в метрах (м); единица измерения – 1 м;

Массу измерять в килограммах (кг), единица измерения – 1 кг;

Время измерять в секундах (с) единица измерения – 1 с.

Конечно, вы знаете и другие, второстепенные единицы измерения. Например, время можно измерять в минутах, часах. Но важно учесть, что все наши последующие расчеты мы будем стараться вести именно в системе СИ.

Часто применяются единицы, которые в 10, 100, 1000, 1000000 и т. д. раз больше принятых единиц (так называемые кратные единицы).

Например: дека (дк) – 10, гекто (г) – 100, кило (к) – 1000, мега (М) – 1000000, деци (д) – 0,1, санти (с) – 0,01, мили (м) – 0,001.

Пример: длина стола равна 95 см. Необходимо в ыразить длину в метрах (м)?

60 см = 60 * 0,01 = 0,6 м

2.2. Цена деления шкалы измерительного прибора

При проведении измерений очень важно правильно пользоваться измерительными приборами. Вам уже знакомы некоторые приборы, такие, как линейка, термометр. С другими вам еще предстоит познакомиться – с измерительным цилиндром, вольтметром амперметром. Но все эти приборы объединяет одно: у них есть шкала.

Чтобы правильно работать с измерительным прибором, необходимо в первую очередь обратить внимание на его измерительную шкалу.

Для примера рассмотрим измерительную шкалу самой обыкновенной линейки.

Рассматриваем пример с линейкой в классе совместно.

С помощью этой линейки можно измерить длину любого предмета, но не в единицах системы СИ, а в сантиметрах. На шкале любого прибора обязательно указаны единицы измерения.

На шкале вы видите штрихи (так называются черточки, нанесенные на шкалу). Промежутки между штрихами называются делениями шкалы. Не путайте штрихи с делениями!

Рядом с некоторыми штрихами расположены числа.

Для того чтобы начать работать с любым прибором, необходимо определить цену деления шкалы этого прибора.

(ПЗ): Цена деления шкалы измерительного прибора – это расстояние между ближайшими штрихами шкалы, выраженное в единицах измеряемой величины. (в сантиметрах или миллиметрах для линейки, в градусах для термометра и т. д.).

Чтобы определить цену деления шкалы любого измерительного прибора, необходимо выбрать два ближайших штриха, рядом с которыми нанесены численные значения величины. Например, два и один. Теперь из большего значения нужно вычесть меньшее. Полученный результат нужно разделить на число делений между выбранными штрихами

В нашем примере – ученическая линейка.

Еще один пример – шкала термометра.

Рис. 2. Шкала термометра

Выбираем два ближайших штриха с числами, например, 20 и 10 градусов Цельсия (обратите внимание, что и на этой шкале указаны единицы измерения, °С). Между выбранными штрихами расположено 2 деления. Таким образом, получим

2.3. Погрешность измерения и ее нахождение.

Для правильного проведения измерений недостаточно уметь определять цену деления шкалы прибора. Вспомните, что, говоря о расстоянии от одного пункта до другого, мы иногда употребляем выражения вроде «плюс-минус полкилометра». Это означает, что точное расстояние нам неизвестно, что при его измерении допущена некоторая неточность, или, как принято говорить, погрешность.

Погрешность присутствует при любом измерении, абсолютно точных приборов не существует. И величину погрешности тоже можно определить по шкале измерительного прибора.

(ПЗ): Погрешность измерения – составляет половину цены деления шкалы измерительного прибора.

Пример 1. Например, обычная ученическая линейка имеет цену деления 1 мм. Предположим, с ее помощью мы измерили толщину кусочка мела и у нас получилось 12 мм. Половина цены деления линейки 0,5 мм. Это и есть погрешность измерения. Если обозначить толщину кусочка мела буквой b, то результат измерения записывается так:

b = 12 + 0,5(мм)

Знак (плюс-минус) означает, что при измерении мы могли ошибиться и в большую, и в меньшую сторону, то есть ширина кусочка мела лежит в пределах от 11,5 мм до 12,5 мм.

Рисую на доске пример № 2 с меньшим числом делений, вместе с классом вычисляем ЦД и находим погрешность.

Рис. 1. Шкала обычной линейки

ЦД = (2см – 1см)/5см = 0,2см = 2мм

Половина цены деления линейки в данном случае будет равна 1мм.

Тогда ширина кусочка мела b = 12 + 1(мм), то есть в данном случае ширина кусочка мела лежит в пределах от 11 мм до 13 мм. Разброс измерения получился больше.

В обоих случаях мы провели правильные измерения, но в первом случае погрешность измерения была меньше, а точность выше, чем во втором, так как цена деления линейки была меньше.

Таким образом, из этих двух примеров можно сделать вывод:

(ПЗ): Чем меньше цена деления шкалы прибора, тем больше точность (меньше погрешность) измерений с помощью этого прибора.

При записи величин, с учетом погрешности, пользуются формулой:

(ПЗ): А = а + ∆а,

где А – измеряемая величина, а – результат измерений, ∆а – погрешность измерений.

3. Закрепление изученного материала (10 минут).

Учебник: упражнение № 1.

4. Домашнее задание.

Учебник: § 4, 5.

Задачник: № 17, № 39. (подробное описание задач)

(пояснить как записывать подробное решение задач!!!)

Как известно при измерении (испытании, контроле, анализе) физической величины результат должен быть выражен с точностью, соответствующей поставленной задаче и установленным требованиям.

Точность результата измерений представляет собой качественный показатель, который при обработке результатов наблюдений (единичных наблюдаемых значений) должен быть выражен через его количественные характеристики. При этом наблюдаемое значение согласно ГОСТ Р 50779.10- 2000 (ИСО 3534.1-93) «Статистические методы. Вероятность и основы статистики. Термины и определения» - это значение характеристики, полученное в результате единичного наблюдения при многократных измерениях.

В существующих нормативных документах в настоящее время применяется ряд показателей точности. Проведенный нами анализ нормативнозаконодательных документов показал, что в ФЗ «Об обеспечении единства измерений» определение фундаментального метрологического понятия «показатели точности измерений» отсутствует.

В применяемых в последнее время (РМГ 29-99 ) и новом (РМГ 29-2013 ) терминологических документах понятие «показатели точности измерений» и его определение также не регламентированы.

Среди актуальных документов (межгосударственных - ГОСТ, национальных - ГОСТ Р, а также методических инструкций и рекомендаций - МИ, Р, РД) мы также не нашли стандарта, регламентирующего показатели точности измерений и формы их выражения.

Однако в примечании к понятию «результат измерений», приведенному в РМГ 29-2013, указано, что «... к показателям точности относятся, например, среднее квадратическое отклонение, доверительные границы погрешности, стандартная неопределенность измерений, суммарная стандартная и рас ш ирен ная неопредел ей ности ».

ГОСТ Р ИСО 5725-1-2002 определяет точность как степень близости результата измерений к принятому опорному значению. В нормативном документе отражена концепция «принятого опорного значения», применяемая в международной метрологической практике вместо концепции «истинного значения физической величины», характерной для отечественной метрологии до 2003 года (до принятия в нашей стране МС ИСО 5725).

В документе в качестве примечания (со ссылкой на международный стандарт) поясняется «... применительно к многократным измерениям «термин «точность», когда он относится к серии результатов измерений (испытаний), включает сочетание случайных составляющих и общей систематической погрешности (ИСО 3534-1), что не противоречит подходу к выражению точности через составляющие погрешности результата измерений». Кроме общего понятия качественной характеристики точности приведено пояснение, какие параметры могут быть приняты за количественные характеристики многократных измерений (испытаний).

Однако до 1986 года в нашей стране показатели точности были регламентированы ГОСТ 8.011-72 «ГСИ. Показатели точности измерений и формы выражения результатов измерений». В настоящее время ГОСТ 8.011-72 заменен на МИ 1317 (документ актуален в версии 2004 года ).

В метрологической практике точность измерений описывается рядом показателей, приведённых на рисунке 1.3, причём часть из них выражается в концепции погрешности, а другая часть - в концепции неопределенности.

В новой версии Международного словаря терминов и определений - VIM 3 (2010) особо подчеркивается, что «понятие «точность измерений» не является величиной и ей нс может быть присвоено числовое значение величины. Считается, что измерение является более точным, если оно имеет меньшую погрешность измерения». Кроме этого в VIM 3 отмечается, что полную характеристику точности измерений можно получить, оценивая оба показателя точности - правильность и прецизионность. Термин «точность измерений» не следует использовать для обозначения правильности измерений, а термин прецизионность измерений - для обозначения «точности измерений», хотя последнее имеет связь с двумя этими понятиями .

Рисунок 1.3 - Показатели точности результатов, традиционно используемые в нормативных документах

Из всех представленных и традиционно применяемых в метрологической практике показателей точности мы выделили только те, которые дают полное представление о показателях точности результатов измерений. Результаты проведенного анализа сведены в таблицы 1.1 и 1.2.

В качестве «показателей точности измерений», как следует из схемы (рисунок 1.4) могут также использоваться, характеристики,

регламентированные ГОСТ Р 8.563-2009:

Характеристики погрешности измерений по МИ 1317-2004 ;

характеристики неопределенности по РМГ 43-2001 (прекращено применение МД на территории РФ с 01.10.2012 года) ;

Показатели точности по ГОСТ Р ИСО 5725-2002 .

Таблица 1.1 - Анализ возможности применения характеристик погрешности в качестве показателей точности результата измерений_

Характеристика или

г, математическое выражение Показатель г

в концепции погрешности

или неопределенности

Комментарий

1 Погрешность измерений

Выражение (1) имеет теоретический характер, поскольку истинное значение измеряемой величины всегда остается неизвестным, поэтому на практике применяется уравнение (2). В качестве модели погрешности измерений принимается модель случайной величины (или случайного процесса). Поэтому метрологи не рассматривают возможность использования выражения (2) для разработки представлений о показателях точности измерений.

2 Границы, в

погрешность

измерений

находится с

заданной

вероятностью

Границы погрешности измерений для заданной вероятности дают полное основание судить о возможной степени близости результата измерения к действительному значению измеряемой величины.

3 Среднее квадрагги ческое отклонение погрешности

Знание Од позволяет (при определенных предположениях о виде функции распределения плотности вероятностей погрешностей) оценить интервал значений, в котором может находиться Х л.

4 Среднее

квадратическое

отклонение

случайной

составляющей

погрешности

измерений

Знание только среднего квадратического отклонения случайной составляющей погрешности измерений Одел в общем случае не позволяет судить О возможной степени близости результатов измерений к действительному значению измеряемой величины Х л, поскольку дополнительно к случайной составляющей погрешности измерений может иметь место систематическая составляющая.

Продолжение таблицы 1.1

5 Сходимость

результатов

измерений

Оценивается мерами сходимости

Сама по себе сходимость измерений нс дает ни малейшего представления о границах, в которых может находиться погрешность измерений.

6 Воспроизводимость результатов

Оценивается мерами воспроизводимости

Подобно сходимости измерений, воспроизводимость также не дает представления о границах, в которых может находиться погрешность измерений.

7 Среднее

квадратическое

отклонение

систематической

составляющей

погрешности

измерений

Сами по себе характеристики систематической составляющей погрешности измерений (какими бы они ни казались удовлетворительными) не позволяют судить нам о границах, в которых может находиться (при заданной вероятности) суммарная погрешность измерений. Причины этого - не учёт роли случайной составляющей погрешности измерений.

8 Границы, в

которых не

исключённая

систематическая

составляющая

погрешности

измерений

находится с

заданной

вероятностью

9 Прецизионность измерений

Характеризует степень близости между нсзависи м ы ми резул ьтатам и измерений, полученными при определенных принятых условиях.

Знание только стандартного отклонения прецизионности не позволяет судить о степени возможной близости результатов измерений к действительному значению измеряемой величины Х л.

Регламентированные национальным стандартом ГОСТ Р ИСО 5725-2002, гармонизированным с международными требованиями, показатели точности измерений приведены на рисунке 1.5.


Рисунок 1.4 - Показатели точности измерений методики, регламентированные ГОСТ Р 8.563-2009


Рисунок 1.5 - Показатели точности измерений, регламентированные в ГОСТ Р ИСО 5725-1-2002

Таблица 1.2 - Анализ возможности применения характеристик

неопределенности в качестве показателей точности результата измерений_

Показатель

Характеристика или математическое выражение в концепции погрешности или неопределенности

ТОЧНОСТЬ ИЗМЕРЕНИЙ

ТОЧНОСТЬ ИЗМЕРЕНИЙ

Характеристика качества измерений, отражающая степень близости результатов измерений к истинному значению измеряемой величины. Чем меньше результат измерения отклоняется от истинного значения величины, т. е. чем меньше его погрешность, тем выше Т. и., независимо от того, является ли погрешность систематической, случайной или содержит ту и другую составляющие (см. ПОГРЕШНОСТИ ИЗМЕРЕНИЙ). Иногда в кач-ве количеств. оценки Т. и. указывают погрешность, однако погрешность - понятие, противоположное точности, и логичнее в качестве оценки Т. и. указывать обратную величину относит. погрешности (без учёта её знака). Напр., если относит. погрешность равна ±10-5, то равна 105.

Физический энциклопедический словарь. - М.: Советская энциклопедия . Главный редактор А. М. Прохоров . 1983 .


Смотреть что такое "ТОЧНОСТЬ ИЗМЕРЕНИЙ" в других словарях:

    Точность измерений - Качество измерений, отражающее близость их результатов к истинному значению измеряемой величины Источник: ГОСТ 24846 81: Грунты. Методы измерения деформаций оснований зданий и сооружений …

    точность измерений - — [Л.Г.Суменко. Англо русский словарь по информационным технологиям. М.: ГП ЦНИИС, 2003.] Тематики информационные технологии в целом EN accuracy of measurements …

    Помощью так называемых измерительных приборов постоянно возрастает с ростом науки (Измерения; Единицы мер абсолютные системы). Она зависит теперь не только от тщательного приготовления приборов, но еще от нахождения новых принципов измерений. Так … Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

    точность измерений - поверка. поверять. прибор врет. см. показывать время … Идеографический словарь русского языка

    ГОСТ Р ЕН 306-2011: Теплообменники. Измерения и точность измерений при определении мощности - Терминология ГОСТ Р ЕН 306 2011: Теплообменники. Измерения и точность измерений при определении мощности: 3.31 величина воздействия: Величина, не являющаяся предметом измерения, но способная влиять на получаемый результат. Определения термина из… … Словарь-справочник терминов нормативно-технической документации

    точность результата измерений - точность измерений Одна из характеристик качества измерения, отражающая близость к нулю погрешности результата измерения. Примечание. Считают, что чем меньше погрешность измерения, тем больше его точность. [РМГ 29 99] Тематики метрология,… … Справочник технического переводчика

    точность - 3.1.1 точность (accuracy): Степень близости результата измерений к принятому опорному значению. Примечание Термин «точность», когда он относится к серии результатов измерений, включает сочетание случайных составляющих и общей систематической… … Словарь-справочник терминов нормативно-технической документации

    Средства измерений степень совпадения показаний измерительного прибора с истинным значением измеряемой величины. Чем меньше разница, тем больше точность прибора. Точность эталона или меры характеризуется погрешностью или степенью… … Википедия

    точность - Степень близости результата измерений к принятому опорному значению. Примечание. Термин «точность», когда он относится к серии результатов измерений (испытаний), включает сочетание случайных составляющих и общей систематической… … Справочник технического переводчика

    точность средства измерений - точность Характеристика качества средства измерений, отражающая близость его погрешности к нулю. Примечание. Считается, что чем меньше погрешность, тем точнее средство измерений. [РМГ 29 99] Тематики метрология, основные понятия Синонимы точность … Справочник технического переводчика

Книги

  • Физические основы измерений в технолог. пищевой и химической промышленности. Учебное пособие , Попов Геннадий Васильевич , Земсков Юрий Петрович , Квашнин Борис Николаевич Серия: Учебники для вузов. Специальная литература Издатель: Лань ,
  • Физические основы измерений в технологиях пищевой и химической промышленности. Учебное пособие , Попов Геннадий Васильевич , Земсков Юрий Петрович , Квашнин Борис Николаевич , В настоящем пособии изложены краткие теоретические сведения о закономерностях измерений, измерительных системах, элементах физической картины мира, а также о принципах измерений на основе… Серия: Учебники для ВУЗов. Специальная литература Издатель: