Влаги данные характеристики дают им. Влажность воздуха. Способы определения влажности воздуха. Величины измерения влажности газа

Влажность воздуха. Для характеристики влажности воздуха пользуются понятиями: упругость водяного пара, абсолютная влажность,физиологическая относительная влажность, дефицит насыщения и точка росы.

Упругость паров в воздухе - это напряжение водяных паров, выраженное в единицах давления (мм рт.ст., бары, Н/м 52 0). Упругость водяного пара в состоянии насыщения им воздуха называется максимальной упругостью , или упругостью насыщения при данной температуре. Каждой температуре соответствует определенный максимум количества водяных паров, больше которого воздух не может поглотить. Превышение этого предела вызывает конденсацию и выпадение из воздуха капельно-жидкой воды.

Абсолютная влажность - это содержание водяного пара,выраженное в граммах на 1 м 3 , в миллиметрах давления ртутного столба, или в системе СИ - в паскалях (1 Ра = Н/м2).

Относительная влажность представляет собой отношение фактической упругости водяного пара в воздухе к упругости насыщения при данной температуре, выраженное в процентах.

Дефицит насыщения - это разница между упругостью насыщения и фактической упругостью пара в воздухе или между величинами максимальной и абсолютной влажности.

Точка росы - температура, при которой абсолютная влажность воздуха достигает насыщения, то есть становится максимальной.

Физиологическая относительная влажность) - отношение количества фактически содержащихся водяных паров в воздухе к их максимальному количеству, которое может содержаться в воздухе при температуре поверхности тела человека и легких, то есть, соответственно, при 34 и 37 С (выражается также в процентах). Испарение с поверхности тела и дыхательных путей при температурах ниже указанных возможно, даже если воздух будет полностью насыщен, так как, нагреваясь в дыхательных путях и у поверхности тела до 34 и 37 5о 0С, он становится более влагоемким.



Влажность воздуха влияет на отдачу тепла испарением пота. Интенсивность испарения пота зависит от температуры, относительной влажности и скорости движения воздуха. Чем больше дефицит насыщения и выше скорость движения воздуха, тем интенсивнее идет испарение пота. При этом теряется такое количество тепла, что движущийся воздух (ветер) оказывает благоприятное действие даже при температурах, значительно превышающих температуру тела. Установлено, что ветер ухудшает самочувствие и уменьшае работоспособность при температуре 37,0 5о 0С только в случае 100% насыщения воздуха водяными парами. При влажности воздуха, равной 60%, ветер перестает оказывать благоприятное действие только при температуре свыше 43,3 С, а при влажности 30% - при температуре выше 60 С.

При низких температурах влажность воздуха мало влияет на теплоотдачу с поверхности тела в связи с тем, что в морозном воздухе из-за небольшой его влагоемкости даже при полном насыщении содержится незначительное количество водяных паров.В гигиенической практике принято нормировать относительную влажность в связи с тем, что по ее величине удобнее судить о влиянии влажности, а также иных факторов среды на теплообмен человека. Считается, что оптимальная величина относительной влажности находится в пределах 50-60%; приемлемая нижняя величина 30%, верхняя - 70%, крайняя нижняя - 10-20%, а крайняя верхняя 80-100%. Для измерения используют: гигрометр, психрометр.

Скорость движения воздуха. Гигиеническое значение. Зависимость воздействия на человека от температуры и влажности воздуха. Методы и средства измерения. Оценка.

Движение воздуха. Основным фактором, обусловливающим движение воздуха (ветер), является разница давлений и температур. Движение воздуха характеризуется скоростью, направлением, формой(ламинарное, турбулентное) и продолжительностью Движущийся воздух в очень большой мере влияет на величину переноса тепла конвекцией. Под конвекцией понимают перенос тепла движущимися молекулами воздуха (и жидкостей) в среде с нарушенным тепловым равновесием.Чем выше скорость движения воздуха, тем выше теплоотдача. Охлаждающее действие ветра резко увеличивается при отрицательных температурах воздуха. Скорость движения его порядка сотых долей метра в секунду уже ощущается человеком.Следует заметить, что ветер, оказывая давление на поверхность одежды, облегчает проникновение холодного воздуха в пододежное пространство и ускоряет общее охлаждение организма. По мере повышения температуры окружающего воздуха и уменьшения температурной разницы теплопотеря конвекцией снижается.Если температура воздуха становится равной температуре кожи(34 С), теплоотдача этим путем прекращается вовсе, а если превышает ее, то устанавливается обратный поток тепла от воздуха к телу (конвекционное нагревание). Однако согревающее действие на тело движущегося воздуха имеет место лишь в том случае, если количество передаваемого нагретым воздухом тепла окажется большим,чем его потери за счет испарения пота. Это наблюдается или при очень высокой температуре воздуха (свыше 60 С) или при более низких температурах, но при 100% влажности воздуха, когда испарение пота прекращается. Во всех других случаях (то есть при влажности менее 100% и температуре воздуха ниже 60 С) движущийся воздух оказывает охлаждающее действие. Охлаждающее действие подвижного воздуха используется для улучшения условий обитаемости в танках и других объектах, имеющих источники тепловых излучений. Движение воздуха снимает излишек тепла, падающего на поверхность тела, благодаря чему становится возможной работа при величинах радиации, превосходящих предельно переносимые.

При средних температурах воздуха (от 18 до 20 С) в помещениях оптимальной величиной скорости движения воздуха считается 0,05 - 0,25 м/с, допустимой - 0,3 м/с. При низких температурах максимально переносимые скорости движения воздуха - 3-5 м/с. Средства для измерения: анемометр, кататермометр.

28. Воздух закрытых обитаемых помещений. Причины, изменяющие его естественный состав и уровень загрязнения. Профилактика неблагоприятного воздействия на человека. Воздух в обитаемых помещениях содержит столько же кислорода, однако биологически он не активен. В нем отсутствует “нечто”, необходимое организму и дающее ему бодрость и здоровье. Этим “нечто” является атмосферное электричество, а точнее - его носители, ионы газов. Основное применение ионизаторов - создание в помещениях оптимальной концентрации отрицательно заряженных аэроионов, которые необходимы для нормальной жизнедеятельности. Лишенный аэроионов воздух - "мертвый", ухудшает здоровье и ведет к заболеваниям. Любая болезнь начинается с нарушения обмена веществ в клетках организма, проявлением чего является уменьшение их отрицательного заряда, и это меняет коллоидное состояние клеток, выделению в кровоток их содержимого и внутрисосудистому свертыванию крови. Отрицательный заряд клеток можно восстановить медикаментозными средствами (гепарин) и путем вдыхания воздуха, с избытком отрицательных аэроионов кислорода. Эти аэроионы, поступая в легкие, проникают в кровь и разносятся по всему организму, восстанавливая отрицательный заряд клеток, стимулируя обмен веществ и оказывая антитромботическое действие.

Влажность воздуха является важной характеристикой окружающей среды. Но не все до конца понимают, что подразумевается под подаваемых в сводках погоды. и абсолютная влажность - это связанные понятия. Разобраться в сути одного без понимания другого не представляется возможным.

Воздух и влага

Воздух содержит смесь веществ, находящихся в газообразном состоянии. В первую очередь это азот и кислород. Их в общем составе (100 %) содержится приблизительно 75 % и 23 % по массе соответственно. Около 1,3 % аргона, менее 0,05 % - это углекислый газ. Остаток (недостающая около 0,005% суммарно) приходится на долю ксенона, водорода, криптона, гелия, метана и неона.

Также в воздухе постоянно содержится какое-то количество влаги. В атмосферу она попадает после испарения молекул воды из мирового океана, с увлажненной почвы. В замкнутом пространстве содержание ее может отличаться от внешней среды и зависит от наличия дополнительных источников поступления и потребления.

Для более точного определения физических характеристик и количественных показателей применяется два понятия: относительная влажность и абсолютная влажность. В быту избыточный образуется при сушке белья, в процессе приготовления пищи. Люди и животные выделяют его с дыханием, растения в результате газообмена. В производстве изменение соотношения водяного пара может быть связано с конденсацией при перепаде температур.

Абсолютная и особенности употребления термина

Насколько важны знания точного количества водяного пара в атмосфере? По этим параметрам рассчитываются прогнозы погоды, возможности выпадения осадков и их объем, пути перемещения фронтов. На базе этого определяются риски возникновения циклонов и особенно ураганов, могущих представлять серьезную опасность для региона.

В чем разница двух понятий? Общее то, что и относительная влажность, и абсолютная влажность показывают содержание в воздухе водяного пара. Но первый показатель определяется расчетным путем. Второй же может быть измерен физическими методами с результатом в г/м 3 .

Однако с изменением температуры окружающей среды эти показатели меняются. Известно, что в воздухе максимально может содержаться определенное количество водяного пара - абсолютная влажность. Но для режимов +1°C и +10°C эти значения будут разными.

Зависимость количественного содержания водяного пара в воздухе от температуры отображается в показателе относительной влажности. Она рассчитывается по формуле. Результат выражается в процентном соотношении (объективный показатель от максимально возможного значения).

Влияние условий среды

Как изменится абсолютная и относительная влажность воздуха с повышением температуры, к примеру, с +15°C до +25°C? С ее увеличением давление водяного пара вырастает. А значит, в единице объема (1 м куб.) молекул воды поместится больше. Следовательно, вырастает и абсолютная влажность. Относительная при этом снизится. Это объясняется тем, что фактическое содержание водяного пара осталось на том же уровне, а максимально возможное значение увеличилось. По формуле (разделив одно на другое и умножив результат на 100 %) в итоге получится уменьшение показателя.

Как изменится абсолютная и относительная влажность при понижении температуры? Что происходит при уменьшении с +15°C до +5°C? Абсолютная влажность при этом снизится. Соответственно в 1 м куб. воздушной смеси водяного пара максимально может поместиться меньшее количество. Расчет по формуле покажет увеличение итогового показателя - процент относительной влажности увеличится.

Значение для человека

При наличии избыточного количества паров воды чувствуется духота, при недостатке - ощущается сухость кожных покровов и жажда. Очевидно, что влажность сырого воздуха выше. При избытке лишняя вода не удерживается в газообразном состоянии и переходит в жидкую или твердую среду. В атмосфере она устремляется вниз, это проявляется осадками (туман, изморозь). В помещении на предметах интерьера образуется слой конденсата, на поверхности травы по утрам роса.

Повышение температуры легче переносить в сухом помещении. Однако тот же режим, но при относительной влажности выше 90 % вызывает быстрое перегревание тела. Организм борется с этим явлением одинаково - происходит выделение тепла с потом. Но на сухом воздухе он быстро испаряется (высыхает) с поверхности тела. Во влажной среде этого практически не происходит. Наиболее подходящий (комфортный) для человека режим - это 40-60 %.

Для чего это необходимо? В сыпучих материалах в сырую погоду содержание сухого вещества в единице объема уменьшается. Эта разница не столь существенна, но при больших объемах может «вылиться» в реально определяемое количество.

Продукция (зерно, мука, цемент) имеет допустимый порог влажности, при которой она может храниться без потери качества или технологических свойств. Поэтому контроль показателей и поддержание их на оптимальном уровне обязательны для хранилищ. Снижением влажности в воздухе добиваются уменьшения ее и в продукции.

Приборы

На практике фактическая влажность измеряется гигрометрами. Раньше существовало два подхода. Один основан на изменении растяжимости волоса (человеческий или животного). Другой - на разности показаний термометров в сухой и влажной среде (психрометрический).

В волосном гигрометре стрелка механизма связана с натянутым на рамке волосом. Он в зависимости от влажности окружающего воздуха меняет физические свойства. Стрелка отклоняется от эталонного значения. Ее перемещения отслеживаются по нанесенной шкале.

Относительная влажность и абсолютная влажность воздуха, как известно, зависят от температуры окружающей среды. Эта особенность используется в психрометре. При определении снимаются показания двух рядом расположенных термометров. Колба одного (сухого) находится в обычных условиях. У другого (мокрого) она окутана фитилем, который связан с резервуаром с водой.

В таких условиях термометр измеряет среду с учетом испаряющейся влаги. А этот показатель зависит от количества водяного пара в воздухе. Определяется разность показаний. Значение относительной влажности определяется по специальным таблицам.

В последнее время большее применение имеют датчики, использующие изменения электрических характеристик определенных материалов. Для подтверждения результатов и сверки приборов существуют эталонные установки.

Необходимые приборы и принадлежности : станционный психрометр, аспирационный психрометр, дистиллированная вода, пипетка для смачивания, штатив для укрепления психрометра, ртутный барометр, Психрометрические таблицы, волосной гигрометр.

В атмосферном воздухе всегда имеется водяной пар, содержание которого меняется по объёму в пределах от 0 до 4% и зависит от физико-географических условий местности, времени года, циркуляционных особенностей атмосферы, состояния поверхности почвы, температуры воздуха и т.п.

В единице объёма воздуха при данной температуре содержание водяного пара не может быть больше некоторого предельного количества, называемого максимально возможной упругостью водяного пара или максимальным насыщением . Оно соответствует равновесию между паром и водой, т.е. насыщенному состоянию пара.

Водяной пар, образующийся над испаряемой поверхностью, оказывает определённое давление, которое называется упругостью водяного пара или парциальным давлением (е).

Упругость водяного пара (е) определяется по формуле:

е = Е" - А· р(t - t")

где Е" – максимальная упругость водяного пара при температуре смоченного термометра; р – атмосферное давление; t – температура воздуха (температура по сухому термометру), 0 С; t – температура испаряющей поверхности (температура по смоченному термометру), 0 С; А – постоянная психрометра, зависящая от его конструкции и, главным образом, от скорости движения воздуха около приёмной части психрометра. Так, постоянная станционного психрометра принимается равной 0,0007947, что соответствует средней скорости движения воздуха в будке (0,8 м/сек). Постоянная аспирационного психрометра равна 0,000662 при постоянной скорости движения воздуха (2 м/сек) у приемной части термометров.

Измеряется парциальное давление в миллиметрах ртутного столба или миллибарах. При любой температуре парциальное давление водяного пара (е) не может превышать давление насыщенного пара (Е). Для вычисления Е существуют специальные формулы по ним составлены таблицы по которым его и находят (прил.1, 2).



Относительная влажность (f) – отношение парциального давления водяного пара к давлению насыщенного пара над плоской поверхностью дистиллированной воды при данной температуре, выраженное в %.

Относительная влажность воздуха показывает на сколько воздух близок или далёк к насыщению водяным паром, определяют с точностью до 1%.

Дефицит насыщения (d) – разность между давлением насыщенного водяного пара и его парциальным давлением. d = Е – е.

Дефицит насыщения выражается в мм ртутного столба или миллибарах.

Абсолютная влажность (g) – количество водяного пара, находящегося в 1м 3 воздуха, выраженное в граммах.

Если давление воздуха выражено в миллибарах, то g определяется по формуле:

Если давление воздуха выражено в миллиметрах, то g определяется по формуле:

где L – коэффициент расширения газов, равный 1/273, или 0,00366.

Точка росы (t d) – температура, при которой водяной пар, содержащийся в воздухе при неизменном давлении, достигает состояния насыщения относительно плоской поверхности чистой воды или льда. Точку росы определяют с точностью до десятых долей градуса.

Методы измерения влажности воздуха

Психрометрический метод – это основной метод для определения влажности воздуха, который основан на измерении температуры воздуха и температуры смоченного водой термометра – температуры термодинамического равновесия между затратами тепла на испарение со смоченной поверхности и притоком тепла к термометру от окружающей среды. Определение влажности воздуха этим методом осуществляется по показанию психрометра – прибора, состоящего из двух термометров. Приёмная часть (резервуар) одного из психрометрических термометров обёртывается батистом, находящимся в увлажнённом состоянии (смоченный термометр), С поверхности резервуара смоченного термометра происходит испарение, на которое затрачивается тепло. Другой термометр психрометра – сухой, он показывает температуру воздуха. Смоченный же термометр показывает собственную температуру, зависящую от интенсивности испарения воды с поверхности резервуара.



Для измерения влажности воздуха используются два типа психрометров: станционный и аспирационный.

Станционный психрометр состоит из двух одинаковых термометров с делениями через 0,2 0 , установленных вертикально на штативе в психрометрической будке. Резервуар правого термометра плотно обёртывается в один слой кусочком батиста, конец которого опускается в стаканчик с дистиллированной водой. Стаканчик закрывается крышкой с прорезью для батиста. Установку термометров в психрометрической будке представлена на рис. 20.

Отсчёты по термометрам должны проводиться как можно быстрее, так как присутствие наблюдателя вблизи термометров может исказить показания. Вначале отсчитываются и записываются десятые доли, а затем – целые градусы.

Наблюдения по психрометру проводятся при любой положительной температуре воздуха, а при отрицательной – только до -10 0 , так как при более низкой температуре результаты наблюдений становятся ненадежными. При температуре воздуха ниже 0 0 кончик батиста на смоченном термометре обрезается. Батист смачивают на 30 мин до начала наблюдений, погружая резервуар термометра в стаканчик с водой.

Рис. 20 Установка термометров в психрометрической будке

При отрицательной температуре вода на батисте может быть не только в твердом состоянии (лёд), но и в жидком (переохлаждённая вода). По наружному виду установить это весьма трудно. Для этого необходимо прикоснуться к батисту карандашом, на конце которого имеется кусочек льда или снега, и следить за показанием термометра. Если в момент прикосновения столбик ртути повысится, то на батисте была вода, которая перешла в лёд; при этом выделилась скрытая теплота, за счёт чего и увеличилось показание термометра. Если же от прикосновения к батисту показание термометра не меняется, значит на батисте лёд, и изменения агрегатного состояния не происходит.

Учёт агрегатного состояния воды на резервуаре смоченного термометра весьма важен, так как максимальная упругость водяного пара, входящая в психрометрическую формулу, над водой и льдом различна.

Вычисление характеристик влажности воздуха по показаниям психрометра осуществляется с помощью психрометрических таблиц, составленных по формулам. В психрометрических таблицах приводятся готовые значения t d , e, f, d для разных сочетаний t и t" при постоянной А, равной 0,0007947 и атмосферном давлении 1000 мб. Если давление воздуха больше или меньше 1000 мб, к характеристикам влажности вводятся поправки. Поправку у упругости водяного пара находят по величине атмосферного давления и разности показаний сухого и смоченного термометров. При атмосферном давлении меньше 1000 мб, эта поправка положительна, если превышает 1000 мб, ее вводят со знаком минус.

Аспирационный психрометр (рис. 21) состоит из двух психрометрических термометров 1 , 2 с ценой деления 0.2 0 , помещённых в металлическую оправу.

Оправа состоит из трубки 3 , раздваивающейся книзу, и боковых защит 4 . Верхний конец трубки 3 соединен с аспиратором 7 , просасывающим наружный воздух через трубки 5 и 6 , в которых находятся резервуары термометров 10, 11 . Аспиратор имеет пружинный механизм. Пружина заводится ключом 8 . Трубки 5 и 6 сделаны двойными. Резервуар одного из термометров (правый) обвернут коротко обрезанным батистом. Никелированная и полированная поверхность психрометра хорошо отражает солнечные лучи. Поэтому для его установки не требуется никакой дополнительной защиты и он устанавливается на открытом воздухе. Аспирационные психрометры используются для градиентных наблюдений на метеорологических станциях, а также в полевых микроклиматических исследованиях.

Рис. 21 Аспирационный психрометр

Перед наблюдением психрометр выносят из помещения зимой за 30 мин, а летом за 15 мин. Батист правого термометра смачивают с помощью резиновой груши 9 с пипеткой летом за 4 мин, а зимой за 30 мин до срока наблюдений. После смачивания заводят аспиратор, который в момент отсчёта должен работать полным ходом. Поэтому зимой за 4 мин до отсчёта нужно вторично завести психрометр.

Характеристики влажности воздуха по данным аспирационного психрометра вычисляют также с помощью психрометрических таблиц. Психрометрическая постоянная для этого прибора равна 0,000662.

Гигрометрический метод – основан на свойстве обезжиренного человеческого волоса менять свою длину при изменении влажности воздуха.

Волосной гигрометр (рис. 22). Основной частью волосного гигрометра является обезжиренный (обработанный в эфире и спирте) человеческий волос, обладающий свойством изменять свою длину под влиянием изменения относительной влажности. При уменьшении относительной влажности волос 1 , укрепленный на раме 2 , укорачивается, при увеличении - удлиняется.

Верхний конец волоса прикреплён к регулировочному винту 3 , с помощью которого можно менять положение стрелки 7 на шкале 9 гигрометра. Нижний конец волоса соединён с блоком в виде дужки 4 , сидящей на стержне 5. Грузик 6 этого блока служит для натяжения волоса. На оси блока 8 укреплена стрелка 7 , свободный конец которой при изменении влажности перемещается по шкале.

Цена деления шкалы гигрометра - 1% относительной влажности. Деления на шкале неравномерны: при небольших значениях влажности они крупнее, а при больших – мельче. Применение такой шкалы обусловлено тем, что изменение длины волоса идёт быстрее при малых величинах влажности и медленнее при больших её значениях.

Рис. 22 Волосной гигрометр

При продолжительном действии гигрометры становятся менее чувствительными к изменению влажности: волос вытягивается и загрязняется, а плёнка высыхает. Учитывая это, приходится часто сверять прибор с психрометром и находить его поправки, для чего применяется графический приём. Для этого на координатную сетку наносят точки по данным одновременных наблюдений относительной влажности по психрометру и гигрометру за длительный период (например, за осенние месяцы при подготовке гигрометра к зиме) и через середину полосы, где точки легли более густо, проводят плавную линию так, чтобы по обе стороны от нее было по возможности одинаковое количество точек (рис. 23).

В дальнейшем, пользуясь этой линией, для любого показания гигрометра можно найти соответствующее значение относительной влажности по станционному психрометру. Например, если отсчёт по гигрометру был 75%, то исправленное значение относительной влажности будет 73%.

Для более удобного пользования графиком составляют переводную таблицу. В первом вертикальном столбце (десятки) и в первой горизонтальной строке (единицы) дается шкала гигрометра. В клетки записываются значения относительной влажности, снятые с кривой. Пользуясь этой таблицей, по показаниям гигрометра находят исправленные значения относительной влажности.

Рис.23 График поправок гигрометра

Особо важное значение наблюдения по гигрометру имеют в зимнее время года, когда этот прибор нередко остается единственным для определения влажности воздуха. Поэтому в осенние месяцы его тщательно регулируют и строят переводной график, которым и пользуются в течение всей зимы.

1 Ознакомиться с психрометрическими таблицами путём проработки пояснений к ним и разбора примеров.

2 Ознакомиться с устройством станционного и аспирационного психрометров.

3 Провести измерения по аспирационному психрометру.

4 По показаниям сухого и смоченного термометров и по величине давления с помощью психрометрических таблиц определить характеристики влажности воздуха.

Результаты наблюдений оформить в тетрадь.

ВЛАЖНОСТЬ ВОЗДУХА — содержание водяного пара в воздухе, характеризуемое рядом величин. Вода, испарившаяся с поверхности материков и океанов при их нагревании, попадает в атмосферу и сосредотачивается в нижних слоях тропосферы. Температура, при которой воздух достигает насыщения влагой при данном содержании водяного пара и неизменном давлении, называется точкой росы.

Влажность характеризуется следующими показателями:

Абсолютная влажность (лат. absolutus — полный). Она выражается массой водяного пара в 1 м³ воздуха. Исчисляется в граммах водяного пара на 1 м³ воздуха. Чем выше температура воздуха, тем больше абсолютная влажность, так как больше воды при нагревании переходит из жидкого состояния в парообразное. Днем абсолютная влажность больше, чем ночью. Показатель абсолютной влажности зависит от географического положения данной точки: в полярных широтах, например, она равна до 1 г. на 1 м³ водяного пара, на экваторе до 30 грамм на 1 м³; в Батуми (Грузия, побережье Черного моря) абсолютная влажность составляет 6 г. на 1 м³, а в Верхоянске (Россия, Северо-Восточная Сибирь) — 0,1 грамма на 1 м³. От абсолютной влажности воздуха в большой степени зависит растительный покров местности;

Относительная влажность. Это отношение количества влаги, находящейся в воздухе, к тому количеству, которое он может содержать при той же температуре. Исчисляется относительная влажность в процентах. Например, относительная влажность равна 70%. Это значит, что воздух содержит 70% того количества пара, которое он может вместить при данной температуре. Если суточный ход абсолютной влажности прямо пропорционален ходу температур, то относительная влажность обратно пропорциональна этому ходу. Человек чувствует себя хорошо при относительной влажности, равной 40-75%. Отклонение от нормы вызывает болезненное состояние организма.

Воздух в природе редко бывает насыщенным водяными парами, но всегда содержит какое-то его количество. Нигде на Земле не была зарегистрирована относительная влажность, равная 0%. На метеорологических станциях влажность измеряется с помощью прибора гигрометра, кроме того, используются приборы-самописцы — гигрографы;

Воздух насыщенный и ненасыщенный. При испарении воды с поверхности океана или суши воздух не может вмещать водяной пар беспредельно. Этот предел зависит от температуры воздуха. Воздух, который больше не может вместить влагу, называется насыщенным. Из этого воздуха при малейшем охлаждении его начинают выделяться капельки воды в виде росы, туманов. Это происходит потому, что вода при охлаждении переходит из газообразного состояния (пар) в жидкое. Воздух, находящийся над сухой и теплой поверхностью, обычно содержит водяного пара меньше, чем мог бы содержать при данной температуре. Такой воздух называется ненасыщенным. При его охлаждении не всегда выделяется вода. Чем воздух теплее, тем больше его способность к влагопоглощению. Например, при температуре —20°С воздух содержит не более 1 г/м³ воды; при температуре + 10°С — около 9 г/м³, а при +20°С — около 17 г/м³. Поэтому при кажущейся сильной влажности воздуха в тундре и его сухости в степи абсолютная влажность их может быть одинакова благодаря их разнице в температуре.

Расчет влажности воздуха имеет большое значение не только для определения погоды, но и для проведения многих технических мероприятий, при хранении книг и музейных картин, при лечении легочных болезней и особенно при орошении полей.

Радиационный баланс атмосферы и подстилающей поверхности, сумма прихода и расхода лучистой энергии, поглощаемой и излучаемой атмосферой и подстилающей поверхностью. Для атмосферы радиационный баланс состоит из приходной части - поглощённой прямой и рассеянной солнечной радиации, а также поглощённого длинноволнового (инфракрасного) излучения земной поверхности, и расходной части - потери тепла за счёт длинноволнового излучения атмосферы в направлении к земной поверхности (т. н. противоизлучение атмосферы) и в мировое пространство.

Приходную часть радиационного баланса подстилающей поверхности составляют: поглощённая подстилающей поверхностью прямая и рассеянная солнечная радиация, а также поглощённое противоизлучение атмосферы; расходная часть состоит из потери тепла подстилающей поверхностью за счёт собственного теплового излучения. Радиационный баланс является составной частью теплового баланса атмосферы и подстилающей поверхности.

Дать определение характеристик влажности воздуха

В атмосфере Земли содержится около 14 тыс. км3 водяного пара. Вода попадает в атмосферу в результате испарения с подстилающей поверхности. В атмосфере влага конденсируется, перемещается воздушными течениями и вновь выпадает в виде разнообразных осадков на поверхность Земли, совершая, таким образом, постоянный круговорот воды. Круговорот воды возможен, благодаря, способности воды находится в трёх состояниях (жидком, твердом, газообразном (парообразном)) и легко переходить из одного состояния в другое. Влагооборот является одним из важнейших циклов климатообразования.

Для количественного выражения содержания водяного пара в атмосфере употребляют различные характеристики влажности воздуха. Основные характеристики влажности воздуха - упругость водяного пара и относительная влажность.

Упругость (фактическая) водяного пара (е) - давление водяного пара находящегося в атмосфере выражается в мм. рт. ст. или в миллибарах (мб). Численно почти совпадает с абсолютной влажностью (содержанием водяного пара в воздухе в г/м3), поэтому упругость часто называют абсолютной влажностью. Упругость насыщения (максимальная упругость) (Е) - предел содержания водяного пара в воздухе при данной температуре. Значение упругости насыщения зависит от температуры воздуха, чем выше температура, тем больше он может содержать водяного пара.

Если воздух содержит водяного пара меньше, чем нужно для насыщения его при данной температуре, можно определить, насколько воздух близок к состоянию насыщения. Для этого вычисляют относительную влажность.

Относительная влажность (r) - отношение фактической упругости водяного пара к упругости насыщения, выраженное в процентах.

Имеются и другие важные характеристики влажности, как дефицит влажности и точка росы.

Дефицит влажности (D) - разность между упругостью насыщения и фактической упругостью:

Точка росы фє - температура, при которой содержащийся в воздухе водяной пар мог бы насытить его. Пример, воздух при температуре 27єС имеет е = 27,4 мб. Насытится он при температуре 20єС, которая и будет точкой росы.