Расчет прочности кирпичной кладки стен калькулятор. Расчет кирпичной кладки на прочность. Определение устойчивости кирпичной колонны

III. РАСЧЕТ КАМЕННЫХ КОНСТРУКЦИЙ

Нагрузка на простенок (рис. 30) в уровне низа ригеля перекрытия первого этажа, кН:

снеговая для II снегового района

рулонный ковер кровли – 100 Н/м 2

асфальтовая стяжка при Н/м 3 толщиной 15 мм

утеплитель – древесно-волокнистые плиты толщиной 80 мм при плотности Н/м 3

пароизоляция – 50 Н/м 2

сборные железобетонные плиты покрытия – 1750 Н/м 2

вес железобетонной фермы

вес карниза на кирпичной кладке стены при Н/м 3

вес кирпичной кладки выше отметки +3,03

сосредоточенная от ригелей перекрытий (условно без учета неразрезности ригелей)

вес оконного заполнения при Н/м 2

суммарная расчетная нагрузка на простенок в уровне отм. +3,03


Согласно п. 6.7.5 и 8.2.6 допускается считать стену расчлененной по высоте на однопролетные элементы с расположением опорных шарниров в уровне опирания ригелей. При этом нагрузка от верхних этажей принимается приложенной в центре тяжести сечения стены вышележащего этажа, а все нагрузки кН в пределах данного этажа считаются приложенными с фактическим эксцентриситетом относительно центра тяжести сечения стены.

Согласно п. 6.9 , п. 8.2.2 расстояние от точки приложения опорных реакций ригеля P до внутренней грани стены при отсутствии опор, фиксирующих положение опорного давления, принимается не более одной трети глубины заделки ригеля и не более 7 см (рис. 31).

При глубине заделки ригеля в стену а з = 380 мм, а з: 3 = 380: 3 =

127 мм > 70 мм принимаем точку приложения опорного давления

Р = 346,5 кН на расстоянии 70 мм от внутренней грани стены.

Расчетная высота простенка в нижнем этаже

За расчетную схему простенка нижнего этажа здания принимаем стойку с защемлением в уровне обреза фундамента и с шарнирным опиранием в уровне перекрытия.

Гибкость простенка, выполненного из силикатного кирпича марки 100 на растворе марки 25, при R = 1,3 МПа по табл. 2 , определяется согласно примечанию 1 к табл. 15 при упругой характеристике кладки a= 1000;

коэффициент продольного изгиба по табл. 18 j = 0,96. Согласно п. 4.14 в стенах с жесткой верхней опорой продольный прогиб в опорных сечениях может не учитываться (j = 1,0). В средней трети высоты простенка коэффициент продольного изгиба равен расчетной величине j = 0,96. В приопорных третях высоты j изменяется линейно от j = 1,0 до расчетной величины j = 0,96 (рис. 32). Значения коэффициента продольного изгиба в расчетных сечениях простенка, в уровнях верха и низа оконного проема





Рис. 31

величины изгибающих моментов в уровне опирания ригеля и в расчетных сечениях простенка на уровне верха и низа оконного проема

кНм;

кНм;


Рис.32

Величина нормальных сил в тех же сечениях простенка

Эксцентриситеты продольных сил е 0 = М : N :

Мм < 0,45 y = 0,45 × 250 = 115 мм;

Мм < 0,45 y = 115 мм;

Мм < 0,45 y = 115 мм;

Несущая способность внецентренно сжатого простенка прямоугольного сечения согласно п.4.7 определяется по формуле

где (j- коэффициент продольного прогиба для всего сечения элемента прямоугольной формы; ); m g – коэффициент, учитывающий влияние длительного действия нагрузки (при h = 510 мм > 300 мм принимают m g = 1,0); А – площадь сечения простенка.

В случае самостоятельного проектирования кирпичного дома возникает острая необходимость рассчитать, сможет ли выдержать кирпичная кладка те нагрузки, которые заложены в проекте. Особенно серьёзная ситуация складывается на участках кладки, ослабленных оконными и дверными проёмами. В случае большой нагрузки эти участки могут не выдержать и подвергнуться разрушению.

Точный расчет устойчивости простенка к сжатию вышележащими этажами достаточно сложен и определяется формулами, заложенными в нормативном документе СНиП-2-22-81 (далее ссылка – <1>). В инженерных расчетах прочности стены к сжатию учитывается множество факторов, включая конфигурацию стены, сопротивление сжатию, прочность данного типа материалов и многое другое. Однако приблизительно, «на глазок», можно прикинуть резистентность стены к сжатию, воспользовавшись ориентировочными таблицами, в которых прочность (в тоннах) увязана в зависимость от ширины стенки, а также марок кирпича и раствора. Таблица составлена для показателя высоты стены 2,8 м.

Таблица прочность кирпичной стенки, тонн (пример)

Марки Ширина участка, см
кирпич раствор 25 51 77 100 116 168 194 220 246 272 298
50 25 4 7 11 14 17 31 36 41 45 50 55
100 50 6 13 19 25 29 52 60 68 76 84 92

В случае, если значение ширины простенка находится в интервале между указанными, необходимо ориентироваться на минимальное число. Вместе с тем, следует помнить, что в таблицах учтены не все факторы, которые могут корректировать устойчивость, прочность конструкции и сопротивление кирпичной стенки к сжатию в достаточно широком диапазоне.

По времени нагрузки бывают временные и постоянные.

Постоянные:

  • вес элементов сооружений (вес ограждений, несущих и других конструкций);
  • давление грунтов и горных пород;
  • гидростатическое давление.

Временные:

  • вес временных сооружений;
  • нагрузки от стационарных систем и оборудования;
  • давление в трубопроводах;
  • нагрузки от складируемых изделий и материалов;
  • климатические нагрузки (снеговые, гололёдные, ветровые и т.д.);
  • и многие другие.

При анализе нагруженности конструкций обязательно следует учитывать суммарные эффекты. Ниже приведён пример подсчёта основных нагрузок на простенки первого этажа здания.

Нагруженность кирпичной кладки

Для учёта воздействующей на проектируемый участок стены силы нужно суммировать нагрузки:


В случае малоэтажного строительства задача сильно упрощается, и многими факторами временной нагрузки можно пренебречь, задавая определённый запас прочности на этапе проектирования.

Однако в случае строительства 3 и более этажных сооружений необходим тщательный анализ по специальным формулам, учитывающим сложение нагрузок от каждого этажа, угол приложения силы и многое другое. В отдельных случаях прочность простенка достигается армированием.

Пример расчёта нагрузок

Данный пример показывает анализ действующих нагрузок на простенки 1-го этажа. Здесь учтены только постоянно действующие нагрузка от различных конструкционных элементов здания, с учётом неравномерности веса конструкции и углом приложения сил.

Исходные данные для анализа:

  • количество этажей – 4 этажа;
  • толщина стены из кирпичей Т=64см (0,64 м);
  • удельный вес кладки (кирпич, раствор, штукатурка) М=18 кН/м3 (показатель взят из справочных данных, табл. 19 <1>);
  • ширина оконных проемов составляет: Ш1=1,5 м;
  • высота оконных проемов — В1=3 м;
  • сечение простенка 0,64*1,42 м (нагружаемая площадь, куда приложен вес вышележащих конструктивных элементов);
  • высота этажа Вэт=4,2 м (4200 мм):
  • давление распределено под углом 45 градусов.
  1. Пример определения нагрузки от стены (слой штукатурки 2 см)

Нст=(3-4Ш1В1)(h+0,02)Мyf = (*3-4*3*1,5)* (0,02+0,64) *1,1 *18=0, 447МН.

Ширина нагруженной площади П=Вэт*В1/2-Ш/2=3*4,2/2,0-0,64/2,0=6 м

Нп =(30+3*215)*6 = 4,072МН

Нд=(30+1,26+215*3)*6 = 4,094МН

Н2=215*6 = 1,290МН,

в том числе Н2l=(1,26+215*3)*6= 3,878МН

  1. Собственный вес простенков

Нпр=(0,02+0,64)*(1,42+0,08)*3*1,1*18= 0,0588 МН

Общая нагрузка будет результатом сочетания указанных нагрузок на простенки здания, для её подсчета выполняется суммирование нагрузок от стенки, от перекрытий 2второго этажа и веса проектируемого участка).

Схема анализа нагрузки и прочности конструкции

Для подсчета простенка кирпичной стенки потребуются:

  • протяжённость этажа (она же высота участка) (Вэт);
  • число этажей (Чэт);
  • толщина стены (Т);
  • ширина кирпичной стены (Ш);
  • параметры кладки (тип кирпича, марка кирпича, марка раствора);
  1. Площадь простенка (П)
  1. По таблице 15 <1> необходимо определить коэффициент а (характеристика упругости). Коэффициент зависит от типа, марки кирпича и раствора.
  2. Показатель гибкости (Г)
  1. В зависимости от показателей а и Г, по таблице 18 <1> нужно посмотреть коэффициент изгиба ф.
  2. Нахождение высоты сжатой части

где е0 – показатель экстренсиситета.

  1. Нахождение площади сжатой части сечения

Псж = П*(1-2 е0/Т)

  1. Определение гибкости сжатой части простенка

Гсж=Вэт/Всж

  1. Определение по табл. 18 <1> коэффициент фсж, исходя из Гсж и коэффициента а.
  2. Расчет усредненного коэффициента фср

Фср=(ф+фсж)/2

  1. Определение коэффициента ω (таблица 19 <1>)

ω =1+э/Т<1,45

  1. Расчет силы, воздействующей на сечение
  2. Определение устойчивости

У=Кдв*фср*R*Псж* ω

Кдв – коэффициент длительного воздействия

R – сопротивление кладки сжатию, можно определить по таблице 2 <1>, в МПа

  1. Сверка

Пример расчета прочности кладки

— Вэт — 3,3 м

— Чэт — 2

— Т — 640 мм

— Ш — 1300 мм

— параметры кладки (глиняный кирпич, изготовленный методом пластического прессования, цементно-песчаный раствор, марка кирпича — 100, марка раствора — 50)

  1. Площадь (П)

П=0,64*1,3=0,832

  1. По таблице 15 <1> определяем коэффициент а.
  1. Гибкость (Г)

Г =3,3/0,64=5,156

  1. Коэффициент изгиба (таблица 18 <1>).
  1. Высота сжатой части

Всж=0,64-2*0,045=0,55 м

  1. Площадь сжатой части сечения

Псж = 0,832*(1-2*0,045/0,64)=0,715

  1. Гибкость сжатой части

Гсж=3,3/0,55=6

  1. фсж=0,96
  2. Расчет фср

Фср=(0,98+0,96)/2=0,97

  1. По табл. 19 <1>

ω =1+0,045/0,64=1,07<1,45


Для определения действующей нагрузки необходим расчет веса всех элементов конструкции, оказывающих воздействие на проектируемый участок здания.

  1. Определение устойчивости

У=1*0,97*1,5*0,715*1,07=1,113 МН

  1. Сверка

Условие выполнено, прочность кладки и прочность её элементов достаточна

Недостаточное сопротивление простенка

Что делать, если расчетное сопротивление простенков давлению недостаточно? В этом случае необходимо укрепление стенки при помощи армирования. Ниже приведён пример анализа необходимой модернизации конструкции при недостаточном сопротивлении сжатию.

Для удобства можно воспользоваться табличными данными.

В нижней строке представлены показатели для стенки, армированной проволочной сеткой диаметра 3 мм, с ячейкой 3 см, класса В1. Армирование каждого третьего ряда.

Прирост прочности составляет около 40 %. Обычно данное сопротивление сжатию оказывается достаточным. Лучше сделать подробный анализ, подсчитав изменение прочностных характеристик в соответствии с применяемым способом усиления конструкции.

Ниже приведён пример подобного вычисления

Пример расчета усиления простенков

Исходные данные – см. предыдущий пример.

  • высота этажа — 3,3 м;
  • толщина стены– 0,640 м;
  • ширина кладки 1,300 м;
  • типовые характеристики кладки (тип кирпичей – глиняные кирпичи, изготовленные методом прессования, тип раствора – цементный с песком, марка кирпичей — 100, раствора — 50)

В этом случае условие У>=Н не выполняется (1,113<1,5).

Требуется увеличить сопротивление сжатию и прочность конструкции.

Коэффициент усиления

k=У1/У=1,5/1,113=1,348,

т.е. надо увеличить прочность конструкции на 34,8%.

Усиление железобетонной обоймой

Усиление производится обоймой из бетона В15 толщиной 0,060 м. Вертикальные стержни 0,340 м2, хомуты 0,0283 м2 с шагом 0,150 м.

Размеры сечения усиленной конструкции:

Ш_1=1300+2*60=1,42

Т_1=640+2*60=0,76

При таких показателях условие У>=Н выполняется. Сопротивление сжатию и прочность конструкции достаточны.

Проверим прочность кирпичного простенка несущей стены жилого дома переменной этажности в г. Вологде.

Исходные данные:

Высота этажа - Нэт=2,8 м;

Число этажей - 8 эт;

Шаг несущих стен - а=6,3 м;

Размеры оконного проема - 1,5х1,8 м;

Размеры сечения простенка -1,53х0,68 м;

Толщина внутренней версты - 0,51 м;

Площадь сечения простенка-А=1.04м 2 ;

Длина опорной площадки плит перекрытия на кладку

Материалы: кирпич силикатный утолщенный лицевой (250Ч120Ч88) ГОСТ 379-95, марка СУЛ-125/25, камень силикатный пористый (250Ч120Ч138) ГОСТ 379-95, марка СРП -150/25 и кирпич силикатный пустотелый утолщенный (250х120х88) ГОСТ 379-95 марка СУРП-150/25. Для кладки 1-5 этажей используется цементно-песчаный раствор М75, для 6-8 этажей, плотность кладки =1800 кг/м 3 , кладка многослойная, утеплитель - пенополистирол марки ПСБ-С-35 n=35 кг/м3 (ГОСТ 15588-86). При многослойной кладке нагрузка будет передаваться на внутреннюю версту наружной стены, поэтому при расчете толщину наружной версты и утеплителя не учитываем.

Сбор нагрузки от покрытия и перекрытий представлен в таблицах 2.13, 2.14, 2.15. Расчетный простенок представлен на рис. 2.5.

Рисунок 2.12. Расчетный простенок: а - план; б - вертикальный разрез стены; в-расчетная схема; г - эпюра моментов

Таблица 2.13. Сбор нагрузок на покрытие, кН/м 2

Наименование нагрузки

Нормативное значение кН/м2

Расчетное значение кН/м2

Постоянная:

1. Слой линокрома ТКП, t=3,7 мм,

вес 1м2 материала 4,6 кг/м2, =1100 кг/м3

2. Слой линокрома ХПП, t=2,7 мм

вес 1м2 материала 3,6 кг/м2, =1100 кг/м3

3. Грунтовка «Праймер битумный»

4. Цементно-песчаная стяжка, t=40 мм, =1800 кг/м3

5. Керамзитовый гравий, t=180 мм, =600 кг/м3,

6. Утеплитель - пенополистирол ПСБ-С-35, t=200 мм, =35 кг/м3

7. Пароизол

8. Железобетонная плита перекрытия

Временная:

S0н =0,7ЧSqмЧСeЧСt= 0,7Ч2,4 1Ч1Ч1

Таблица 2.14. Сбор нагрузок на чердачное перекрытие, кН/м2

Таблица 2.15. Сбор нагрузок на междуэтажное перекрытие, кН/м2

Таблица 2.16. Сбор нагрузок на 1 м.п. от наружной стены t=680 мм, кН/м2

Определим ширину грузового участка по формуле 2.12

где b-расстояние между разбивочными осями, м;

а - величина опирания плиты перекрытия, м.

Длина грузовой площади простенка определяется по формуле (2.13).

где l - ширина простенка;

l f - ширина оконных проемов, м.

Определение грузовой площади (соответственно рисунку 2.6) производится по формуле (2.14)


Рисунок 2.13. Схема определения грузовой площади простенка

Подсчет усилия N на простенок от вышерасположенных этажей на уровне низа перекрытий первого этажа, ведем исходя из грузовой площади и действующих нагрузок на перекрытия, покрытия и кровлю, нагрузки от веса наружной стены.

Таблица 2.17. Сбор нагрузок, кН/м

Наименование нагрузки

Расчетное значение кН/м

1. Конструкция покрытия

2. Чердачное перекрытие

3. Междуэтажное перекрытие

4. Наружная стена t=680 мм

Расчет внецентренно сжатых неармированных элементов каменных конструкций следует производить по формуле 13

Наружные несущие стены должны быть, как минимум, рассчитаны на прочность, устойчивость, местное смятие и сопротивление теплопередаче. Чтобы узнать, какой толщины должна быть кирпичная стена , нужно произвести ее расчет. В этой статье мы рассмотрим расчет несущей способности кирпичной кладки, а в следующих статьях - остальные расчеты. Чтобы не пропустить выход новой статьи, подпишитесь на рассылку и вы узанете какой должна быть толщина стены после всех расчетов. Так как наша компания занимается строительством коттеджей, то есть малоэтажным строительством, то все расчеты мы будем рассматривать именно для этой категории.

Несущими называются стены, которые воспринимают нагрузку от опирающихся на них плит перекрытий, покрытий, балок и т.д.

Также следует учесть марку кирпича по морозостойкости. Так как каждый строит дом для себя, как минимум на сто лет, то при сухом и нормальном влажностном режиме помещений принимается марка (М рз) от 25 и выше.

При строительстве дома, коттеджа, гаража, хоз.построек и др.сооружений с сухим и нормальным влажностным режимом рекомендуется применять для наружных стен пустотелый кирпич, так как его теплопроводность ниже, чем у полнотелого. Соответственно, при теплотехническом расчете толщина утеплителя получится меньше, что сэкономит денежные средства при его покупке. Полнотелый кирпич для наружных стен необходимо применять только при необходимости обеспечения прочности кладки.

Армирование кирпичной кладки допускается только лишь в том случае, когда увеличение марки кирпича и раствора не позволяет обеспечить требуемую несущую способность.

Пример расчета кирпичной стены.

Несущая способность кирпичной кладки зависит от многих факторов - от марки кирпича, марки раствора, от наличия проемов и их размеров, от гибкости стен и т.д. Расчет несущей способности начинается с определения расчетной схемы. При расчете стен на вертикальные нагрузки, стена считается опертой на шарнирно-неподвижные опоры. При расчете стен на горизонтальные нагрузки (ветровые), стена считается жестко защемленной. Важно не путать эти схемы, так как эпюры моментов будут разными.

Выбор расчетного сечения .

В глухих стенах за расчетное принимается сечение I-I на уровне низа перекрытия с продольной силой N и максимальным изгибающим моментом М. Часто опасным бывает сечение II-II , так как изгибающий момент чуть меньше максимального и равен 2/3М, а коэффициенты m g и φ минимальны.

В стенах с проемами сечение принимается на уровне низа перемычек.

Давайте рассмотрим сечение I-I.

Из прошлой статьи Сбор нагрузок на стену первого этажа возьмем полученное значение полной нагрузки, которая включает в себя нагрузки от перекрытия первого этажа P 1 =1,8т и вышележащих этажей G=G п +P 2 +G 2 = 3,7т:

N = G + P 1 = 3,7т +1,8т = 5,5т

Плита перекрытия опирается на стену на расстоянии а=150мм. Продольная сила P 1 от перекрытия будет находиться на расстоянии а / 3 = 150 / 3 = 50 мм. Почему на 1/3? Потому что эпюра напряжений под опорным участком будет в виде треугольника, а центр тяжести треугольника как раз находится на 1/3 длины опирания.

Нагрузка от вышележащих этажей G считается приложенной по центру.

Так как нагрузка от плиты перекрытия (P 1) приложена не по центру сечения, а на расстоянии от него равном:

e = h/2 - a/3 = 250мм/2 - 150мм/3 = 75 мм = 7,5 см,

то она будет создавать изгибающий момент (М) в сечении I-I. Момент - это произведение силы на плечо.

M = P 1 * e = 1,8т * 7,5см = 13,5 т*см

Тогда эксцентриситет продольной силы N составит:

e 0 = M / N = 13,5 / 5,5 = 2,5 см

Так как несущая стена толщиной 25см, то в расчете следует учесть величину случайного эксцентриситета e ν =2см, тогда общий эксцентриситет равен:

e 0 = 2,5 + 2 = 4,5 см

y=h/2=12,5см

При e 0 =4,5 см < 0,7y=8,75 расчет по раскрытию трещин в швах кладки можно не производить.

Прочность кл адки внецентренно сжатого элемента определяется по формуле:

N ≤ m g φ 1 R A c ω

Коэффициенты m g и φ 1 в рассматриваемом сечении I-I равны 1.

Кирпич - достаточно прочный строительный материал, особенно полнотелый, и при строительстве домов в 2-3 этажа стены из рядового керамического кирпича в дополнительных расчетах как правило не нуждаются. Тем не менее ситуации бывают разные, например, планируется двухэтажный дом с террасой на втором этаже. Металлические ригеля, на которые будут опираться также металлические балки перекрытия террасы, планируется опереть на кирпичные колонны из лицевого пустотелого кирпича высотой 3 метра, выше будут еще колонны высотой 3 м, на которые будет опираться кровля:

При этом возникает естественный вопрос: какое минимальное сечение колонн обеспечит требуемую прочность и устойчивость? Конечно же, идея выложить колонны из глиняного кирпича, а тем более стены дома, является далеко не новой и все возможные аспекты расчетов кирпичных стен, простенков, столбов, которые есть суть колонны, достаточно подробно изложены в СНиП II-22-81 (1995) "Каменные и армокаменные конструкции". Именно этим нормативным документом и следует руководствоваться при расчетах. Приводимый ниже расчет, не более, чем пример использования указанного СНиПа.

Чтобы определить прочность и устойчивость колонн, нужно иметь достаточно много исходных данных, как то: марка кирпича по прочности, площадь опирания ригелей на колонны, нагрузка на колонны, площадь сечения колонны, а если на этапе проектирования ничего из этого не известно, то можно поступить следующим образом:


при центральном сжатии

Проектируется: Терраса размерами 5х8 м. Три колонны (одна посредине и две по краям) из лицевого пустотелого кирпича сечением 0,25х0,25 м. Расстояние между осями колонн 4 м. Марка кирпича по прочности М75.

При такой расчетной схеме максимальная нагрузка будет на среднюю нижнюю колонну. Именно ее и следует рассчитывать на прочность. Нагрузка на колонну зависит от множества факторов, в частности от района строительства. Например, снеговая нагрузка на кровлю в Санкт-Петербурге составляет 180 кг/м², а в Ростове-на-Дону - 80 кг/м². С учетом веса самой кровли 50-75 кг/м² нагрузка на колонну от кровли для Пушкина Ленинградской области может составить:

N с кровли = (180·1,25 +75)·5·8/4 = 3000 кг или 3 тонны

Так как действующие нагрузки от материала перекрытия и от людей, восседающих на террасе, мебели и др. пока не известны, но железобетонная плита точно не планируется, а предполагается, что перекрытие будет деревянным, из отдельно лежащих обрезных досок, то для расчетов нагрузки от террасы можно принять равномерно распределенную нагрузку 600 кг/м², тогда сосредоточенная сила от террасы, действующая на центральную колонну, составит:

N с террасы = 600·5·8/4 = 6000 кг или 6 тонн

Собственный вес колонн длиной 3 м будет составлять:

N с колонны = 1500·3·0,38·0,38 = 649,8 кг или 0,65 тонн

Таким образом суммарная нагрузка на среднюю нижнюю колонну в сечении колонны возле фундамента составит:

N с об = 3000 + 6000 + 2·650 = 10300 кг или 10,3 тонн

Однако в данном случае можно учесть, что существует не очень большая вероятность того, что временная нагрузка от снега, максимальная в зимнее время, и временная нагрузка на перекрытие, максимальная в летнее время, будут приложены одновременно. Т.е. сумму этих нагрузок можно умножить на коэффициент вероятности 0,9, тогда:

N с об = (3000 + 6000)·0.9 + 2·650 = 9400 кг или 9,4 тонн

Расчетная нагрузка на крайние колонны будет почти в два раза меньше:

N кр = 1500 + 3000 + 1300 = 5800 кг или 5,8 тонн

2. Определение прочности кирпичной кладки.

Марка кирпича М75 означает, что кирпич должен выдерживать нагрузку 75 кгс/см², однако прочность кирпича и прочность кирпичной кладки - разные вещи. Понять это поможет следующая таблица:

Таблица 1 . Расчетные сопротивления сжатию для кирпичной кладки

Но и это еще не все. Все тот же СНиП II-22-81 (1995) п.3.11 а) рекомендует при площади столбов и простенков менее 0.3 м² умножать значение расчетного сопротивления на коэффициент условий работы γ с =0,8 . А так как площадь сечения нашей колонны составляет 0,25х0,25 = 0,0625 м², то придется этой рекомендацией воспользоваться. Как видим, для кирпича марки М75 даже при использовании кладочного раствора М100 прочность кладки не будет превышать 15 кгс/см². В итоге расчетное сопротивление для нашей колонны составит 15·0,8 = 12 кг/см², тогда максимальное сжимающее напряжение составит:

10300/625 = 16,48 кг/см² > R = 12 кгс/см²

Таким образом для обеспечения необходимой прочности колонны нужно или использовать кирпич большей прочности, например М150 (расчетное сопротивление сжатию при марке раствора М100 составит 22·0,8 = 17,6 кг/см²) или увеличивать сечение колонны или использовать поперечное армирование кладки. Пока остановимся на использовании более прочного лицевого кирпича.

3. Определение устойчивости кирпичной колонны.

Прочность кирпичной кладки и устойчивость кирпичной колонны - это тоже разные вещи и все тот же СНиП II-22-81 (1995) рекомендует определять устойчивость кирпичной колонны по следующей формуле :

N ≤ m g φRF (1.1)

m g - коэффициент, учитывающий влияние длительной нагрузки. В данном случае нам, условно говоря, повезло, так как при высоте сечения h ≤ 30 см, значение данного коэффициента можно принимать равным 1.

φ - коэффициент продольного изгиба, зависящий от гибкости колонны λ . Чтобы определить этот коэффициент, нужно знать расчетную длину колонны l o , а она далеко не всегда совпадает с высотой колонны. Тонкости определения расчетной длины конструкции здесь не изложены, лишь отметим, что согласно СНиП II-22-81 (1995) п.4.3: "Расчетные высоты стен и столбов l o при определении коэффициентов продольного изгиба φ в зависимости от условий опирания их на горизонтальные опоры следует принимать:

а) при неподвижных шарнирных опорах l o = Н ;

б) при упругой верхней опоре и жестком защемлении в нижней опоре: для однопролетных зданий l o = 1,5H , для многопролетных зданий l o = 1,25H ;

в) для свободно стоящих конструкций l o = 2Н ;

г) для конструкций с частично защемленными опорными сечениями — с учетом фактической степени защемления, но не менее l o = 0,8Н , где Н — расстояние между перекрытиями или другими горизонтальными опорами, при железобетонных горизонтальных опорах расстояние между ними в свету."

На первый взгляд, нашу расчетную схему можно рассматривать, как удовлетворяющую условиям пункта б). т.е можно принимать l o = 1,25H = 1,25·3 = 3,75 метра или 375 см . Однако уверенно использовать это значение мы можем лишь в том случае, когда нижняя опора действительно жесткая. Если кирпичная колонна будет выкладываться на слой гидроизоляции из рубероида, уложенный на фундамент, то такую опору скорее следует рассматривать как шарнирную, а не жестко защемленную. И в этом случае наша конструкция в плоскости, параллельной плоскости стены, является геометрически изменяемой, так как конструкция перекрытия (отдельно лежащие доски) не обеспечивает достаточную жесткость в указанной плоскости. Из подобной ситуации возможны 4 выхода:

1. Применить принципиально другую конструктивную схему , например - металлические колонны, жестко заделанные в фундамент, к которым будут привариваться ригеля перекрытия, затем из эстетических соображений металлические колонны можно обложить лицевым кирпичом любой марки, так как всю нагрузку будет нести металл. В этом случае, правда нужно рассчитывать металлические колонны, но расчетную длину можно принимать l o = 1,25H .

2. Сделать другое перекрытие , например из листовых материалов, что позволит рассматривать и верхнюю и нижнюю опору колонны, как шарнирные, в этом случае l o = H .

3. Сделать диафрагму жесткости в плоскости, параллельной плоскости стены. Например по краям выложить не колонны, а скорее простенки. Это также позволит рассматривать и верхнюю и нижнюю опору колонны, как шарнирные, но в этом случае необходимо дополнительно рассчитывать диафрагму жесткости.

4. Не обращать внимания на вышеприведенные варианты и рассчитывать колонны, как отдельно стоящие с жесткой нижней опорой, т.е l o = 2Н . В конце концов древние греки ставили свои колонны (правда, не из кирпича) без каких-либо знаний о сопротивлении материалов, без использования металлических анкеров, да и столь тщательно выписанных строительных норм и правил в те времена не было, тем не менее некоторые колонны стоят и по сей день.

Теперь, зная расчетную длину колонны, можно определить коэффициент гибкости:

λ h = l o / h (1.2) или

λ i = l o (1.3)

h - высота или ширина сечения колонны, а i - радиус инерции.

Определить радиус инерции в принципе не сложно, нужно разделить момент инерции сечения на площадь сечения, а затем из результата извлечь квадратный корень, однако в данном случае в этом нет большой необходимости. Таким образом λ h = 2·300/25 = 24 .

Теперь, зная значение коэффициента гибкости, можно наконец-то определить коэффициент продольного изгиба по таблице:

Таблица 2 . Коэффициенты продольного изгиба для каменных и армокаменных конструкций
(согласно СНиП II-22-81 (1995))

При этом упругая характеристика кладки α определяется по таблице:

Таблица 3 . Упругая характеристика кладки α (согласно СНиП II-22-81 (1995))

В итоге значение коэффициента продольного изгиба составит около 0,6 (при значении упругой характеристики α = 1200, согласно п.6). Тогда предельная нагрузка на центральную колонну составит:

N р = m g φγ с RF = 1·0,6·0,8·22·625 = 6600 кг < N с об = 9400 кг

Это означает, что принятого сечения 25х25 см для обеспечения устойчивости нижней центральной центрально-сжатой колонны недостаточно. Для увеличения устойчивости наиболее оптимальным будет увеличение сечения колонны. Например, если выкладывать колонну с пустотой внутри в полтора кирпича, размерами 0,38х0,38 м, то таким образом не только увеличится площадь сечения колонны до 0,13 м² или 1300 см², но увеличится и радиус инерции колонны до i = 11,45 см . Тогда λ i = 600/11,45 = 52,4 , а значение коэффициента φ = 0,8 . В этом случае предельная нагрузка на центральную колонну составит:

N р = m g φγ с RF = 1·0,8·0,8·22·1300 = 18304 кг > N с об = 9400 кг

Это означает, что сечения 38х38 см для обеспечения устойчивости нижней центральной центрально-сжатой колонны хватает с запасом и даже можно уменьшить марку кирпича. Например, при первоначально принятой марке М75 предельная нагрузка составит:

N р = m g φγ с RF = 1·0,8·0,8·12·1300 = 9984 кг > N с об = 9400 кг

Вроде бы все, но желательно учесть еще одну деталь. Фундамент в этом случае лучше делать ленточным (единым для всех трех колонн), а не столбчатым (отдельно для каждой колонны), в противном случае даже небольшие просадки фундамента приведут к дополнительным напряжениям в теле колонны и это может привести к разрушению. С учетом всего вышеизложенного наиболее оптимальным будет сечение колонн 0,51х0,51 м, да и с эстетической точки зрения такое сечение является оптимальным. Площадь сечения таких колонн составит 2601 см².

Пример расчета кирпичной колонны на устойчивость
при внецентренном сжатии

Крайние колонны в проектируемом доме не будут центрально сжатыми, так как на них будут опираться ригеля только с одной стороны. И даже если ригеля будут укладываться на всю колонну, то все равно из-за прогиба ригелей нагрузка от перекрытия и кровли будет передаваться крайним колоннам не по центру сечения колонны. В каком именно месте будет передаваться равнодействующая этой нагрузки, зависит от угла наклона ригелей на опорах, модулей упругости ригелей и колонн и ряда других факторов. Это смещение называется эксцентриситетом приложения нагрузки е о. В данном случае нас интересует наиболее неблагоприятное сочетание факторов, при котором нагрузка от перекрытия на колонны будет передаваться максимально близко к краю колонны. Это означает, что на колонны кроме самой нагрузки будет также действовать изгибающий момент, равный M = Ne о , и этот момент нужно учесть при расчетах. В общем случае проверку на устойчивость можно выполнять по следующей формуле:

N = φRF - MF/W (2.1)

W - момент сопротивления сечения. В данном случае нагрузку для нижних крайних колонн от кровли можно условно считать центрально приложенной, а эксцентриситет будет создавать только нагрузка от перекрытия. При эксцентриситете 20 см

N р = φRF - MF/W = 1·0,8·0,8·12·2601 - 3000·20·2601 · 6/51 3 = 19975,68 - 7058,82 = 12916,9 кг > N кр = 5800 кг

Таким образом даже при очень большом эксцентриситете приложения нагрузки у нас имеется более чем двукратный запас по прочности.

Примечание: СНиП II-22-81 (1995) "Каменные и армокаменные конструкции" рекомендует использовать другую методику расчета сечения, учитывающую особенности каменных конструкций, однако результат при этом будет приблизительно таким же, поэтому методика расчета, рекомендуемая СНиПом здесь не приводится.